
Vicente MarchÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307880/publications.pdf Version: 2024-02-01

VICENTE MARCHÃIN

#	Article	IF	CITATIONS
1	Polyurethane–polyurea hybrid nanocapsules as efficient delivery systems of anticancer Ir(<scp>iii</scp>) metallodrugs. Inorganic Chemistry Frontiers, 2022, 9, 2123-2138.	3.0	11
2	Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane–Polyurea Hybrid Nanocarrier. Biomacromolecules, 2022, 23, 2900-2913.	2.6	14
3	A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides. Chemical Communications, 2021, 57, 982-985.	2.2	7
4	A Cyclometalated Ir ^{III} Complex Conjugated to a Coumarin Derivative Is a Potent Photodynamic Agent against Prostate Differentiated and Tumorigenic Cancer Stem Cells. Chemistry - A European Journal, 2021, 27, 8547-8556.	1.7	16
5	COUPY Coumarins as Novel Mitochondria-Targeted Photodynamic Therapy Anticancer Agents. Journal of Medicinal Chemistry, 2021, 64, 17209-17220.	2.9	30
6	A simple method for the synthesis of <i>N</i> -difluoromethylated pyridines and 4-pyridones/quinolones by using BrCF ₂ COOEt as the difluoromethylation reagent. RSC Advances, 2020, 10, 29829-29834.	1.7	7
7	Unexpected photoactivation pathways in a folate-receptor-targeted trans-diazido Pt(iv) anticancer pro-drug. Dalton Transactions, 2020, 49, 11828-11834.	1.6	7
8	Frontispiece: Transformation of COUPY Fluorophores into a Novel Class of Visibleâ€Lightâ€Cleavable Photolabile Protecting Groups. Chemistry - A European Journal, 2020, 26, .	1.7	0
9	Transformation of COUPY Fluorophores into a Novel Class of Visibleâ€Lightâ€Cleavable Photolabile Protecting Groups. Chemistry - A European Journal, 2020, 26, 16222-16227.	1.7	13
10	Modulating Photostability and Mitochondria Selectivity in Far-Red/NIR Emitting Coumarin Fluorophores through Replacement of Pyridinium by Pyrimidinium. Journal of Organic Chemistry, 2020, 85, 6086-6097.	1.7	23
11	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie - International Edition, 2019, 58, 6311-6315.	7.2	142
12	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie, 2019, 131, 6377-6381.	1.6	28
13	Solid-Phase Approaches for Labeling Targeting Peptides with Far-Red Emitting Coumarin Fluorophores. Journal of Organic Chemistry, 2019, 84, 1808-1817.	1.7	22
14	Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging. Journal of Organic Chemistry, 2018, 83, 1185-1195.	1.7	90
15	High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution. Journal of Organic Chemistry, 2018, 83, 11519-11531.	1.7	28
16	Toward Angiogenesis Inhibitors Based on the Conjugation of Organometallic Platinum(II) Complexes to RGD Peptides. ChemMedChem, 2018, 13, 1755-1762.	1.6	14
17	Efficient siRNA–peptide conjugation for specific targeted delivery into tumor cells. Chemical Communications, 2017, 53, 2870-2873.	2.2	16
18	Development of Green/Red-Absorbing Chromophores Based on a Coumarin Scaffold That Are Useful as Caging Groups. Journal of Organic Chemistry, 2017, 82, 5398-5408.	1.7	58

VICENTE MARCHÃIN

#	Article	IF	CITATIONS
19	Somatostatin receptor-targeted organometallic iridium(<scp>iii</scp>) complexes as novel theranostic agents. Chemical Communications, 2017, 53, 5523-5526.	2.2	53
20	Sequential Uncaging with Green Light can be Achieved by Fineâ€Tuning the Structure of a Dicyanocoumarin Chromophore. ChemistryOpen, 2017, 6, 375-384.	0.9	23
21	A Green Light-Triggerable RGD Peptide for Photocontrolled Targeted Drug Delivery: Synthesis and Photolysis Studies. Journal of Organic Chemistry, 2016, 81, 11556-11564.	1.7	43
22	A Photoactivatable Platinum(IV) Anticancer Complex Conjugated to the RNA Ligand Guanidinoneomycin. Chemistry - A European Journal, 2015, 21, 18474-18486.	1.7	27
23	Synthesis and Tau RNA Binding Evaluation of Ametantrone-Containing Ligands. Journal of Organic Chemistry, 2015, 80, 2155-2164.	1.7	5
24	Integrin-targeted delivery into cancer cells of a Pt(<scp>iv</scp>) pro-drug through conjugation to RGD-containing peptides. Dalton Transactions, 2015, 44, 202-212.	1.6	67
25	An integrin-targeted photoactivatable Pt(<scp>iv</scp>) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chemical Communications, 2015, 51, 9169-9172.	2.2	101
26	Ametantrone-based compounds as potential regulators of Tau pre-mRNA alternative splicing. Organic and Biomolecular Chemistry, 2015, 13, 452-464.	1.5	8
27	Synthesis of Janus Compounds for the Recognition of G-U Mismatched Nucleobase Pairs. Journal of Organic Chemistry, 2013, 78, 10666-10677.	1.7	18
28	Conjugation of a Ru(II) Arene Complex to Neomycin or to Guanidinoneomycin Leads to Compounds with Differential Cytotoxicities and Accumulation between Cancer and Normal Cells. Molecular Pharmaceutics, 2013, 10, 1964-1976.	2.3	34
29	Exploring the effect of aminoglycoside guanidinylation on ligands for Tau exon 10 splicing regulatory element RNA. Organic and Biomolecular Chemistry, 2012, 10, 9243.	1.5	8
30	Somatostatin Subtype-2 Receptor-Targeted Metal-Based Anticancer Complexes. Bioconjugate Chemistry, 2012, 23, 1838-1855.	1.8	55
31	Photocontrolled DNA Binding of a Receptor-Targeted Organometallic Ruthenium(II) Complex. Journal of the American Chemical Society, 2011, 133, 14098-14108.	6.6	170
32	Identification of Ligands for the Tau Exonâ€10 Splicing Regulatory Element RNA by Using Dynamic Combinatorial Chemistry . Chemistry - A European Journal, 2011, 17, 1946-1953.	1.7	34
33	Solid-phase synthesis and DNA binding studies of dichloroplatinum(ii) conjugates of dicarba analogues of octreotide as new anticancer drugs. Chemical Communications, 2009, , 4705.	2.2	25
34	Preparation of Ribonuclease S Domain-Swapped Dimers Conjugated with DNA and PNA: Modulating the Activity of Ribonucleases. Bioconjugate Chemistry, 2008, 19, 263-270.	1.8	5
35	Stepwise Solidâ€Phase Synthesis of Nucleopeptides. Current Protocols in Nucleic Acid Chemistry, 2007, 31, Unit 4.22.	0.5	3
36	Synthesis of Peptideâ€Oligonucleotide Conjugates by Dielsâ€Alder Cycloaddition in Water. Current Protocols in Nucleic Acid Chemistry, 2007, 31, Unit 4.32.	0.5	3

VICENTE MARCHÃIN

#	Article	IF	CITATIONS
37	Incorporation of two modified nucleosides allows selective platination of an oligonucleotide making it suitable for duplex cross-linking. Journal of Biological Inorganic Chemistry, 2007, 12, 901-911.	1.1	9
38	Selective Platination of Modified Oligonucleotides and Duplex Cross-Links. Angewandte Chemie - International Edition, 2006, 45, 8194-8197.	7.2	18
39	Linking the 3′ Ends of Oligonucleotide Duplexes with Cystine Disulfide Bridges. European Journal of Organic Chemistry, 2006, 2006, 958-963.	1.2	3
40	Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. Nucleic Acids Research, 2006, 34, 1668-1668.	6.5	7
41	Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. Nucleic Acids Research, 2006, 34, e24-e24.	6.5	59
42	Stepwise Solidâ€₱hase Synthesis of Nucleopeptides. Current Protocols in Nucleic Acid Chemistry, 2004, 16, 4.22.1.	0.5	2
43	Insights into the Reaction of Transplatin with DNA and Proteins: Methionine-Mediated Formation of Histidine-Guaninetrans-Pt(NH3)2Cross-Links. Chemistry - A European Journal, 2004, 10, 5369-5375.	1.7	24
44	Stabilization of DNA duplexes by covalently-linked peptides. Tetrahedron, 2004, 60, 5461-5469.	1.0	12
45	2,2,5,5-Tetramethylpyrrolidin-3-one-1-sulfinyl Group for 5â€ [~] -Hydroxyl Protection of Deoxyribonucleoside Phosphoramidites in the Solid-Phase Preparation of DNA Oligonucleotides. Journal of the American Chemical Society, 2004, 126, 9601-9610.	6.6	8
46	Multivariate Curve Resolution Applied to the Analysis and Resolution of Two-Dimensional [1H,15N] NMR Reaction Spectra. Analytical Chemistry, 2004, 76, 7094-7101.	3.2	55
47	Conceptual "Heat-Driven―Approach to the Synthesis of DNA Oligonucleotides on Microarrays. Annals of the New York Academy of Sciences, 2003, 1002, 1-11.	1.8	17
48	Solution Structure and Stability of Tryptophan-Containing Nucleopeptide Duplexes. ChemBioChem, 2003, 4, 40-49.	1.3	16
49	Thermolytic Carbonates for Potential 5'-Hydroxyl Protection of Deoxyribonucleosides. Journal of Organic Chemistry, 2003, 68, 10003-10012.	1.7	32
50	Solution structure and stability of a disulfide cross-linked nucleopeptide duplex. Chemical Communications, 2003, , 2558-2559.	2.2	4
51	Towards nucleopeptides containing any trifunctional amino acid (II). Tetrahedron, 2002, 58, 6965-6978.	1.0	27
52	AN IMPROVED SYNTHESIS OF N-[(9-HYDROXYMETHYL)-2-FLUORENYL]SUCCINAMIC ACID (HMFS), A VERSATILE HANDLE FOR THE SOLID-PHASE SYNTHESIS OF BIOMOLECULES. Synthetic Communications, 2001, 31, 225-232.	1.1	21
53	Towards a Better Understanding of the Cisplatin Mode of Action. Chemistry - A European Journal, 2001, 7, 808-815.	1.7	55
54	Alternative Procedures for the Synthesis of Methionine-Containing Peptideâ^'Oligonucleotide Hybrids. European Journal of Organic Chemistry, 2000, 2000, 2495-2500.	1.2	21

#	Article	IF	CITATIONS
55	Use of Dimethyldioxirane for the Oxidation of 1,2-Dithiolan-3-ones to 1-Oxides or 1,1-Dioxides. Preparation of 3H-1,2-Benzodithiol-3-one 1,1-Dioxide (Beaucage Sulfurizing Reagent). Synthesis, 1999, 1999, 43-45.	1.2	12
56	Towards nucleopeptides containing any trifunctional amino acid. Tetrahedron, 1999, 55, 13251-13264.	1.0	38
57	The Stepwise Solid-Phase Synthesis Methodology is Suitable for the Preparation of a Great Variety of Nucleopeptides. Nucleosides & Nucleotides, 1999, 18, 1493-1494.	0.5	1