
Nicole Baran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307708/publications.pdf Version: 2024-02-01

NICOLE RADAN

#	Article	IF	CITATIONS
1	Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 2012, 163, 287-303.	3.7	1,382
2	Screening of French groundwater for regulated and emerging contaminants. Science of the Total Environment, 2015, 518-519, 562-573.	3.9	136
3	Determination of chloroacetanilides, triazines and phenylureas and some of their metabolites in soils by pressurised liquid extraction, GC–MS/MS, LC–MS and LC–MS/MS. Journal of Chromatography A, 2005, 1067, 225-233.	1.8	82
4	Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France. Environmental Pollution, 2015, 203, 214-225.	3.7	80
5	Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environmental Science and Pollution Research, 2016, 23, 5733-5742.	2.7	70
6	Pesticides in the groundwater of a spring draining a sandy aquifer: Temporal variability of concentrations and fluxes. Journal of Contaminant Hydrology, 2006, 87, 176-190.	1.6	64
7	Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints. Journal of Hydrology, 2008, 358, 56-69.	2.3	56
8	Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6,) Tj ETQ 108, 107-117.	q0 0 0 rgBT 1.6	/Overlock 10 49
9	Hydrodynamic and geochemical constraints on pesticide concentrations in the groundwater of an agricultural catchment (Brévilles, France). Environmental Pollution, 2007, 148, 729-738.	3.7	48
10	Interaction between different water bodies in a small catchment in the Paris basin (Brévilles, France): Tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios. Applied Geochemistry, 2008, 23, 58-75.	1.4	45
11	Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: Consequences on groundwater quality in an alluvial aquifer (Ain Plain, France). Journal of Contaminant Hydrology, 2013, 154, 20-28.	1.6	45
12	Determination of oxanilic and sulfonic acid metabolites of acetochlor in soils by liquid chromatography–electrospray ionisation mass spectrometry. Journal of Chromatography A, 2002, 957, 69-77.	1.8	44
13	Field data and modelling of water and nitrate movement through deep unsaturated loess. Journal of Hydrology, 2007, 345, 27-37.	2.3	42
14	Long-term transfer of diffuse pollution at catchment scale: Respective roles of soil, and the unsaturated and saturated zones (Brévilles, France). Journal of Hydrology, 2009, 369, 381-391.	2.3	41
15	Effect of pesticides and metabolites on groundwater bacterial community. Science of the Total Environment, 2017, 576, 879-887.	3.9	37
16	Controls on atrazine leaching through a soil-unsaturated fractured limestone sequence at Brévilles, France. Journal of Contaminant Hydrology, 2006, 84, 81-105.	1.6	35
17	Mobility, turnover and storage of pollutants in soils, sediments and waters: achievements and results of the EU project AquaTerra. A review. Agronomy for Sustainable Development, 2009, 29, 161-173.	2.2	34
18	Acetochlor mineralization and fate of its two major metabolites in two soils under laboratory conditions. Chemosphere, 2008, 71, 663-670.	4.2	33

NICOLE BARAN

#	Article	IF	CITATIONS
19	Advantages of online SPE coupled with UPLC/MS/MS for determining the fate of pesticides and pharmaceutical compounds. Analytical and Bioanalytical Chemistry, 2014, 406, 1181-1191.	1.9	29
20	Individual and joint toxicity of the herbicide S-metolachlor and a metabolite, deethylatrazine on aquatic crustaceans: Difference between ecological groups. Chemosphere, 2016, 165, 118-125.	4.2	29
21	Simulation of water and solute transport in field soils with the LEACHP model. Agricultural Water Management, 2000, 44, 225-245.	2.4	27
22	Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 2869-2878.	1.9	26
23	Analytical developments for 47 pesticides: first identification of neutral chloroacetanilide derivatives in French groundwater. International Journal of Environmental Analytical Chemistry, 2013, 93, 1660-1675.	1.8	26
24	Conducting groundwater monitoring studies in Europe for pesticide active substances and their metabolites in the context of Regulation (EC) 1107/2009. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2019, 14, 1-93.	0.5	26
25	Infiltration of Acetochlor and Two of Its Metabolites in Two Contrasting Soils. Journal of Environmental Quality, 2004, 33, 241-249.	1.0	24
26	Side Effects of Pesticides and Metabolites in Groundwater: Impact on Denitrification. Frontiers in Microbiology, 2021, 12, 662727.	1.5	23
27	Pesticides in groundwater at a national scale (France): Impact of regulations, molecular properties, uses, hydrogeology and climatic conditions. Science of the Total Environment, 2021, 791, 148137.	3.9	23
28	An innovative procedure to assess multi-scale temporal trends in groundwater quality: Example of the nitrate in the Seine–Normandy basin, France. Journal of Hydrology, 2015, 522, 1-10.	2.3	22
29	Triple-Element Compound-Specific Stable Isotope Analysis (3D-CSIA): Added Value of Cl Isotope Ratios to Assess Herbicide Degradation. Environmental Science & Technology, 2021, 55, 13891-13901.	4.6	20
30	Pesticides and their metabolites in European groundwater: Comparing regulations and approaches to monitoring in France, Denmark, England and Switzerland. Science of the Total Environment, 2022, 842, 156696.	3.9	20
31	Ecology-based evaluation of groundwater ecosystems under intensive agriculture: A combination of community analysis and sentinel exposure. Science of the Total Environment, 2018, 613-614, 1353-1366.	3.9	19
32	Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Journal of Contaminant Hydrology, 2016, 190, 1-14.	1.6	18
33	Characterisation of suspended particulate matter in the Rhone River: insights into analogue selection. Environmental Chemistry, 2016, 13, 804.	0.7	17
34	Insights into natural organic matter and pesticide characterisation and distribution in the Rhone River. Environmental Chemistry, 2017, 14, 64.	0.7	16
35	Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics?. Environmental Science and Pollution Research, 2018, 25, 14324-14335.	2.7	15
36	Wetland hydrodynamics and mitigation of pesticides and their metabolites at pilot-scale. Ecological Engineering, 2019, 136, 185-192.	1.6	15

NICOLE BARAN

#	Article	IF	CITATIONS
37	Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments. Environmental Science: Nano, 2017, 4, 2055-2065.	2.2	12
38	Influence of hydrodynamics on the water pathway and spatial distribution of pesticide and metabolite concentrations in constructed wetlands. Journal of Environmental Management, 2020, 270, 110690.	3.8	11
39	Evaluation of ELISA microtitter plate-based assays for the direct determination of isoproturon in water samples and soil extracts. Chemosphere, 1997, 35, 1099-1116.	4.2	8
40	Reactivity of vadose-zone solids to S-metolachlor and its two main metabolites: case of a glaciofluvial aquifer. Environmental Science and Pollution Research, 2020, 27, 22865-22877.	2.7	7
41	Multi-tracer tests to evaluate the hydraulic setting of a complex aquifer system (Brévilles spring) Tj ETQq1 1 0.	784314 rg 0.9	;BT /Overlo <mark>c</mark> i
42	Toward Integrative Bacterial Monitoring of Metolachlor Toxicity in Groundwater. Frontiers in Microbiology, 2018, 9, 2053.	1.5	4
43	Elucidating heterogeneous nitrate contamination in a small basement aquifer. A multidisciplinary approach: NO3 isotopes, CFCs-SF6, microbiological activity, geophysics and hydrogeology. Journal of Contaminant Hydrology, 2021, 241, 103813.	1.6	3
44	Water isotopes and chemical tools for understanding pesticide transfer in a watershed of the volcanic island of Martinique (French West Indies). Isotopes in Environmental and Health Studies, 2020, 56, 684-699.	0.5	2
45	Nitrate transport in the chalk vadose zone in in Picardy (France). Geological Society Special Publication, 0, , SP517-2020-164.	0.8	0