List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330763/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progress in Neurobiology, 2001, 65, 135-172.               | 2.8  | 1,056     |
| 2  | NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575, 669-673.                                                                                                                        | 13.7 | 782       |
| 3  | 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. Journal of Neurochemistry, 2005, 95, 1521-1540.        | 2.1  | 327       |
| 4  | Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies?. Biomedical<br>Journal, 2018, 41, 21-33.                                                                               | 1.4  | 262       |
| 5  | Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Review of<br>Proteomics, 2008, 5, 207-224.                                                                       | 1.3  | 242       |
| 6  | Tau Phosphorylation and Sevoflurane Anesthesia. Anesthesiology, 2012, 116, 779-787.                                                                                                                    | 1.3  | 195       |
| 7  | Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain, 2017, 140, 184-200.                                                             | 3.7  | 184       |
| 8  | Novel Alzheimer risk genes determine the microglia response to amyloidâ€Î² but not to TAU pathology.<br>EMBO Molecular Medicine, 2020, 12, e10606.                                                     | 3.3  | 182       |
| 9  | Targeting Phospho-Ser422 by Active Tau Immunotherapy in the THYTau22 Mouse Model: A Suitable<br>Therapeutic Approach. Current Alzheimer Research, 2012, 9, 397-405.                                    | 0.7  | 173       |
| 10 | Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology.<br>Neurobiology of Aging, 2014, 35, 2079-2090.                                                         | 1.5  | 163       |
| 11 | Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.                                                                                                | 4.2  | 158       |
| 12 | Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica<br>Communications, 2017, 5, 91.                                                                      | 2.4  | 157       |
| 13 | Neurotoxicity and Memory Deficits Induced by Soluble Low-Molecular-Weight Amyloid-Â1-42 Oligomers<br>Are Revealed In Vivo by Using a Novel Animal Model. Journal of Neuroscience, 2012, 32, 7852-7861. | 1.7  | 156       |
| 14 | Clinical potential of minocycline for neurodegenerative disorders. Neurobiology of Disease, 2004, 17,<br>359-366.                                                                                      | 2.1  | 145       |
| 15 | A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Molecular Psychiatry, 2016, 21, 97-107.                                                                                   | 4.1  | 145       |
| 16 | Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology.<br>Neurobiology of Disease, 2011, 43, 486-494.                                                   | 2.1  | 137       |
| 17 | Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics. Lancet Neurology, The, 2003, 2, 366-374.                                                                 | 4.9  | 129       |
| 18 | Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.                                         | 4.1  | 129       |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Premature ovarian aging in mice deficient for Gpr3. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8922-8926.                                                                                             | 3.3 | 128       |
| 20 | Altered Neuronal Excitability in Cerebellar Granule Cells of Mice Lacking Calretinin. Journal of Neuroscience, 2003, 23, 9320-9327.                                                                                                                    | 1.7 | 122       |
| 21 | A Dual Role of Adenosine A <sub>2A</sub> Receptors in 3-Nitropropionic Acid-Induced Striatal Lesions:<br>Implications for the Neuroprotective Potential of A <sub>2A</sub> Antagonists. Journal of<br>Neuroscience, 2003, 23, 5361-5369.               | 1.7 | 118       |
| 22 | Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiology of Aging, 2014, 35, 2474-2478.                                                                                                                      | 1.5 | 116       |
| 23 | Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy<br>Metabolism. Frontiers in Molecular Neuroscience, 2018, 11, 2.                                                                                          | 1.4 | 113       |
| 24 | p53 and Bax activation in 6-hydroxydopamine-induced apoptosis in PC12 cells. Brain Research, 1997, 751,<br>139-142.                                                                                                                                    | 1.1 | 104       |
| 25 | Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease. Progress in Neurobiology, 2007, 81, 331-348.                                                                                            | 2.8 | 102       |
| 26 | The Chemokine MIP-11±/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.<br>Scientific Reports, 2015, 5, 15862.                                                                                                              | 1.6 | 100       |
| 27 | Role of the Tau N-terminal region in microtubule stabilization revealed by newendogenous truncated forms. Scientific Reports, 2015, 5, 9659.                                                                                                           | 1.6 | 100       |
| 28 | Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like<br>Tau pathology. Human Molecular Genetics, 2015, 24, 5965-5976.                                                                                  | 1.4 | 96        |
| 29 | Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neuroscience Letters, 2000, 283, 193-196.                                                                                                                                                   | 1.0 | 93        |
| 30 | Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent<br>learning and memory, and attenuated late-phase long-term depression of synaptic transmission.<br>Neurobiology of Learning and Memory, 2011, 95, 296-304. | 1.0 | 93        |
| 31 | The Peptidylprolyl cis/trans-Isomerase Pin1 Modulates Stress-induced Dephosphorylation of Tau in<br>Neurons. Journal of Biological Chemistry, 2006, 281, 19296-19304.                                                                                  | 1.6 | 89        |
| 32 | Detrimental Effects of Diet-Induced Obesity on Ï" Pathology Are Independent of Insulin Resistance in Ï"<br>Transgenic Mice. Diabetes, 2013, 62, 1681-1688.                                                                                             | 0.3 | 88        |
| 33 | IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer's disease. Cell<br>Reports, 2021, 36, 109574.                                                                                                                 | 2.9 | 88        |
| 34 | From tau phosphorylation to tau aggregation: what about neuronal death?. Biochemical Society Transactions, 2010, 38, 967-972.                                                                                                                          | 1.6 | 87        |
| 35 | Dysregulation of TrkB Receptors and BDNF Function by Amyloid-Î <sup>2</sup> Peptide is Mediated by Calpain.<br>Cerebral Cortex, 2015, 25, 3107-3121.                                                                                                   | 1.6 | 84        |
| 36 | D-β-Hydroxybutyrate Is Protective in Mouse Models of Huntington's Disease. PLoS ONE, 2011, 6, e24620.                                                                                                                                                  | 1.1 | 81        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Molecular<br>Neurodegeneration, 2018, 13, 54.                                                                                                                                                                         | 4.4 | 80        |
| 38 | Effects of the Adenosine A2A Receptor Antagonist SCH 58621 on Cyclooxygenase-2 Expression, Clial<br>Activation, and Brain-Derived Neurotrophic Factor Availability in a Rat Model of Striatal<br>Neurodegeneration. Journal of Neuropathology and Experimental Neurology, 2007, 66, 363-371. | 0.9 | 78        |
| 39 | Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of<br>Huntington's disease. Molecular and Cellular Neurosciences, 2008, 37, 454-470.                                                                                                                    | 1.0 | 76        |
| 40 | A genetic variation in the ADORA2A gene modifies age at onset in Huntington's disease. Neurobiology of Disease, 2009, 35, 474-476.                                                                                                                                                           | 2.1 | 75        |
| 41 | Mutant huntingtin alters Tau phosphorylation and subcellular distribution. Human Molecular<br>Genetics, 2015, 24, 76-85.                                                                                                                                                                     | 1.4 | 73        |
| 42 | The Adenosine A <sub>1</sub> Receptor Agonist Adenosine Amine Congener Exerts a Neuroprotective<br>Effect against the Development of Striatal Lesions and Motor Impairments in the 3-Nitropropionic Acid<br>Model of Neurotoxicity. Journal of Neuroscience, 2002, 22, 9122-9133.            | 1.7 | 72        |
| 43 | Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 235.                                                                                                              | 1.4 | 72        |
| 44 | Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain, 2019, 142, 3636-3654.                                                                                                                                | 3.7 | 71        |
| 45 | NMDA receptor dysfunction contributes to impaired brainâ€derived neurotrophic factorâ€induced<br>facilitation of hippocampal synaptic transmission in a <scp>T</scp> au transgenic model. Aging Cell,<br>2013, 12, 11-23.                                                                    | 3.0 | 64        |
| 46 | A Critical Evaluation of Adenosine A2A Receptors as Potentially "Druggable"<br>Targets in Huntingtons Disease. Current Pharmaceutical Design, 2008, 14, 1500-1511.                                                                                                                           | 0.9 | 63        |
| 47 | Association between caffeine intake and age at onset in Huntington's disease. Neurobiology of Disease, 2013, 58, 179-182.                                                                                                                                                                    | 2.1 | 63        |
| 48 | Effects of Remifentanil on NÂ-methyl-d-aspartate Receptor. Anesthesiology, 2005, 102, 1235-1241.                                                                                                                                                                                             | 1.3 | 61        |
| 49 | Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator.<br>EMBO Molecular Medicine, 2018, 10, .                                                                                                                                                    | 3.3 | 61        |
| 50 | Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiology of Disease, 2011, 42, 524-529.                                                                                                                                                                         | 2.1 | 56        |
| 51 | Memantine for axial signs in Parkinson's disease: a randomised, double-blind, placebo-controlled pilot<br>study. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 552-555.                                                                                                       | 0.9 | 55        |
| 52 | The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Scientific Reports, 2016, 6, 31493.                                                                                                                         | 1.6 | 55        |
| 53 | Solvent-detergent filtered (S/D-F) fresh frozen plasma and cryoprecipitate minipools prepared in a newly designed integral disposable processing bag system. Transfusion Medicine, 2010, 20, 48-61.                                                                                          | 0.5 | 53        |
| 54 | Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiology of Disease, 2004, 15, 152-159.                                                                                                                               | 2.1 | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Minocycline in phenotypic models of Huntington's disease. Neurobiology of Disease, 2005, 18, 206-217.                                                                                                                                                                                                           | 2.1 | 52        |
| 56 | Early Tau Pathology Involving the Septo-Hippocampal Pathway in a Tau Transgenic Model: Relevance to<br>Alzheimers Disease. Current Alzheimer Research, 2009, 6, 152-157.                                                                                                                                        | 0.7 | 50        |
| 57 | Topological analysis of striatal lesions induced by 3-nitropropionic acid in the Lewis rat.<br>NeuroReport, 2001, 12, 1769-1772.                                                                                                                                                                                | 0.6 | 47        |
| 58 | Striatal and Cortical Neurochemical Changes Induced by Chronic Metabolic Compromise in the<br>3-Nitropropionic Model of Huntington's Disease. Neurobiology of Disease, 2002, 10, 410-426.                                                                                                                       | 2.1 | 47        |
| 59 | Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible<br>AAV vector. Experimental Neurology, 2007, 204, 387-399.                                                                                                                                                | 2.0 | 47        |
| 60 | Adenosine Augmentation Evoked by an ENT1 Inhibitor Improves Memory Impairment and Neuronal<br>Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2018, 55,<br>8936-8952.                                                                                                     | 1.9 | 46        |
| 61 | Thyroid Hormone Supplementation Restores Spatial Memory, Hippocampal Markers of<br>Neuroinflammation, Plasticity-Related Signaling Molecules, and β-Amyloid Peptide Load in Hypothyroid<br>Rats. Molecular Neurobiology, 2019, 56, 722-735.                                                                     | 1.9 | 46        |
| 62 | PTUâ€induced hypothyroidism in rats leads to several early neuropathological signs of Alzheimer's<br>disease in the hippocampus and spatial memory impairments. Hippocampus, 2014, 24, 1381-1393.                                                                                                               | 0.9 | 45        |
| 63 | From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease?. Biochemical<br>Society Transactions, 2014, 42, 587-592.                                                                                                                                                                      | 1.6 | 45        |
| 64 | Central Nervous System and Peripheral Inflammatory Processes in Alzheimer's Disease: Biomarker<br>Profiling Approach. Frontiers in Neurology, 2015, 6, 181.                                                                                                                                                     | 1.1 | 44        |
| 65 | A2A receptor knockout worsens survival and motor behaviour in a transgenic mouse model of<br>Huntington's disease. Neurobiology of Disease, 2011, 41, 570-576.                                                                                                                                                  | 2.1 | 43        |
| 66 | Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition.<br>Neuroscience Letters, 1996, 221, 69-71.                                                                                                                                                                   | 1.0 | 42        |
| 67 | 6-hydroxydopamine-induced nuclear factor-kappaB activation in PC12 cells22Abbreviations: 6-OHDA,<br>6-hydroxydopamine; EMSA, electrophoretic mobility shift assay; GSH, glutathione; IAP, inhibitory<br>apoptosis protein; MAP, mitogen-activated protein; NAC, N-acetyl-cystein; NF-ΰB, nuclear factor-ΰB; and | 2.0 | 40        |
| 68 | PD. Parkinsonae ws disease Biochemical Pharmacology, 2001, 62, 475-481.<br>Nuclear factor-κB activation in permanent intraluminal focal cerebral ischemia in the rat.<br>Neuroscience Letters, 2000, 288, 241-245.                                                                                              | 1.0 | 38        |
| 69 | Loss of Medial Septum Cholinergic Neurons in THY-Tau22 Mouse Model: What Links with tau<br>Pathology?. Current Alzheimer Research, 2011, 8, 633-638.                                                                                                                                                            | 0.7 | 38        |
| 70 | Progressive Age-Related Cognitive Decline in Tau Mice. Journal of Alzheimer's Disease, 2013, 37, 777-788.                                                                                                                                                                                                       | 1.2 | 38        |
| 71 | Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology, 2005, 49, 695-702.                                                                                                                                                               | 2.0 | 37        |
| 72 | Rescue of impaired late–phase long-term depression in a tau transgenic mouse model. Neurobiology of Aging, 2015, 36, 730-739.                                                                                                                                                                                   | 1.5 | 37        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Increased tauopathy drives microglia-mediated clearance of beta-amyloid. Acta Neuropathologica<br>Communications, 2016, 4, 63.                                                                               | 2.4 | 35        |
| 74 | The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. Journal of Caffeine and Adenosine Research, 2018, 8, 43-58.                                                                      | 0.8 | 35        |
| 75 | The Adenosinergic Signaling: A Complex but Promising Therapeutic Target for Alzheimer's Disease.<br>Frontiers in Neuroscience, 2018, 12, 520.                                                                | 1.4 | 34        |
| 76 | Amyloid and Tau Neuropathology Differentially Affect Prefrontal Synaptic Plasticity and Cognitive<br>Performance in Mouse Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 37, 109-125.  | 1.2 | 32        |
| 77 | Filamin-A and Myosin VI colocalize with fibrillary Tau protein in Alzheimer's disease and FTDP-17 brains.<br>Brain Research, 2010, 1345, 182-189.                                                            | 1.1 | 28        |
| 78 | Human platelet concentrates: a source of solvent/detergentâ€ŧreated highly enriched brainâ€derived<br>neurotrophic factor. Transfusion, 2012, 52, 1721-1728.                                                 | 0.8 | 28        |
| 79 | A 2A Râ€induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 2019, 67, 2329-2342.                                                                                                    | 2.5 | 28        |
| 80 | Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and<br>Tauopathies?. Neuroendocrinology, 2018, 107, 181-195.                                                             | 1.2 | 27        |
| 81 | Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state.<br>Brain, 2021, 144, 1167-1182.                                                                        | 3.7 | 27        |
| 82 | P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy. Progress in Neurobiology, 2021, 206, 102139.                                                                      | 2.8 | 23        |
| 83 | Lack of Minocycline Efficiency in Genetic Models of Huntington's Disease. NeuroMolecular Medicine, 2007, 9, 47-54.                                                                                           | 1.8 | 22        |
| 84 | Association of corticobasal degeneration and Huntington's disease: Can Tau aggregates protect<br>Huntingtin toxicity?. Movement Disorders, 2009, 24, 1089-1090.                                              | 2.2 | 22        |
| 85 | Tacrolimus-induced nephrotoxicity in mice is associated with microRNA deregulation. Archives of Toxicology, 2018, 92, 1539-1550.                                                                             | 1.9 | 22        |
| 86 | Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. Journal of Clinical Investigation, 2022, 132, .                                              | 3.9 | 22        |
| 87 | Increased Alix (apoptosis-linked gene-2 interacting protein X) immunoreactivity in the degenerating striatum of rats chronically treated by 3-nitropropionic acid. Neuroscience Letters, 2004, 368, 309-313. | 1.0 | 21        |
| 88 | New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer's disease. Neurobiology of Disease, 2019, 129, 217-233.     | 2.1 | 21        |
| 89 | Human platelet lysate biotherapy for traumatic brain injury: preclinical assessment. Brain, 2021, 144, 3142-3158.                                                                                            | 3.7 | 21        |
| 90 | Observations in THY-Tau22 mice that resemble behavioral and psychological signs and symptoms of dementia. Behavioural Brain Research, 2013, 242, 34-39.                                                      | 1.2 | 20        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The neuroprotective activity of heat-treated human platelet lysate biomaterials manufactured from<br>outdated pathogen-reduced (amotosalen/UVA) platelet concentrates. Journal of Biomedical Science,<br>2019, 26, 89.            | 2.6 | 20        |
| 92  | Glial cells and adaptive immunity in frontotemporal dementia with tau pathology. Brain, 2021, 144, 724-745.                                                                                                                       | 3.7 | 19        |
| 93  | Heat-treated human platelet pellet lysate modulates microglia activation, favors wound healing and promotes neuronal differentiation in vitro. Platelets, 2021, 32, 226-237.                                                      | 1.1 | 17        |
| 94  | Glial Purinergic Signaling in Neurodegeneration. Frontiers in Neurology, 2021, 12, 654850.                                                                                                                                        | 1.1 | 17        |
| 95  | Characterization and Chromatographic Isolation of Platelet Extracellular Vesicles from Human<br>Platelet Lysates for Applications in Neuroregenerative Medicine. ACS Biomaterials Science and<br>Engineering, 2021, 7, 5823-5835. | 2.6 | 17        |
| 96  | Clearance of manganese from the rat substantia nigra following intra-nigral microinjections.<br>Neuroscience Letters, 2002, 328, 170-174.                                                                                         | 1.0 | 16        |
| 97  | Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker.<br>Neurobiology of Aging, 2013, 34, 757-769.                                                                                      | 1.5 | 16        |
| 98  | Aging, but not tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice. Neurobiology of Aging, 2015, 36, 1013-1028.                                                                              | 1.5 | 16        |
| 99  | Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but<br>pro-fibrotic in late phase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863,<br>1336-1349.           | 1.8 | 16        |
| 100 | Brain insulin response and peripheral metabolic changes in a Tau transgenic mouse model.<br>Neurobiology of Disease, 2019, 125, 14-22.                                                                                            | 2.1 | 16        |
| 101 | Minocycline-induced activation of tetracycline-responsive promoter. Neuroscience Letters, 2003, 352, 155-158.                                                                                                                     | 1.0 | 15        |
| 102 | Novel Lipidized Analog of Prolactin-Releasing Peptide Improves Memory Impairment and Attenuates<br>Hyperphosphorylation of Tau Protein in a Mouse Model of Tauopathy. Journal of Alzheimer's Disease,<br>2018, 62, 1725-1736.     | 1.2 | 15        |
| 103 | Caffeine Consumption During Pregnancy Accelerates the Development of Cognitive Deficits in Offspring in a Model of Tauopathy. Frontiers in Cellular Neuroscience, 2019, 13, 438.                                                  | 1.8 | 15        |
| 104 | Brain network remodelling reflects tau-related pathology prior to memory deficits in Thy-Tau22 mice.<br>Brain, 2020, 143, 3748-3762.                                                                                              | 3.7 | 15        |
| 105 | THY-Tau22 mouse model accumulates more tauopathy at late stage of the disease in response to microglia deactivation through TREM2 deficiency. Neurobiology of Disease, 2021, 155, 105398.                                         | 2.1 | 14        |
| 106 | Early-Life Environment Influence on Late-Onset Alzheimer's Disease. Frontiers in Cell and<br>Developmental Biology, 2022, 10, 834661.                                                                                             | 1.8 | 14        |
| 107 | Hippocampal BDNF Expression in a Tau Transgenic Mouse Model. Current Alzheimer Research, 2012, 9, 406-410.                                                                                                                        | 0.7 | 12        |
| 108 | Chronic intoxication with 3-nitropropionic acid in rats induces the loss of striatal dopamine terminals without affecting nigral cell viability. Neuroscience Letters, 2004, 354, 234-238.                                        | 1.0 | 11        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Hyperexcitability and seizures in the THY-Tau22 mouse model of tauopathy. Neurobiology of Aging, 2020, 94, 265-270.                                                                                                             | 1.5 | 11        |
| 110 | Design, synthesis and evaluation of 2-aryl benzoxazoles as promising hit for the<br>A <sub>2A</sub> receptor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 850-864.                                          | 2.5 | 10        |
| 111 | Omics analysis of mouse brain models of human diseases. Gene, 2017, 600, 90-100.                                                                                                                                                | 1.0 | 10        |
| 112 | Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Frontiers in Molecular Neuroscience, 2020, 13, 570223.                                                 | 1.4 | 10        |
| 113 | Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy?. Advances in Experimental Medicine and Biology, 2019, 1184, 207-216.                                                                                               | 0.8 | 10        |
| 114 | Equilibrative nucleoside transporter 1 inhibition rescues energy dysfunction and pathology in a model of tauopathy. Acta Neuropathologica Communications, 2021, 9, 112.                                                         | 2.4 | 8         |
| 115 | Increased surface P2X4 receptors by mutant SOD1 proteins contribute to ALS pathogenesis in SOD1-G93A mice. Cellular and Molecular Life Sciences, 2022, 79, .                                                                    | 2.4 | 8         |
| 116 | The Controversial Role of Adenosine A2A Receptor Antagonists as Neuro-protective Agents. Current<br>Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 35-45.                                                        | 0.6 | 7         |
| 117 | Does physical activity associated with chronic food restriction alleviate anxiety like behaviour, in female mice?. Hormones and Behavior, 2020, 124, 104807.                                                                    | 1.0 | 7         |
| 118 | Recombinant AAV Viral Vectors Serotype 1, 2, and 5 Mediate Differential Gene Transfer Efficiency in Rat<br>Striatal Fetal Grafts. Cell Transplantation, 2007, 16, 1013-1020.                                                    | 1.2 | 6         |
| 119 | Alzheimer's disease risk, obesity and tau: is insulin resistance guilty?. Expert Review of<br>Neurotherapeutics, 2013, 13, 461-463.                                                                                             | 1.4 | 6         |
| 120 | Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain<br>Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting. Journal of Visualized Experiments, 2014, , .                           | 0.2 | 6         |
| 121 | Can the administration of platelet lysates to the brain help treat neurological disorders?. Cellular and Molecular Life Sciences, 2022, 79, .                                                                                   | 2.4 | 6         |
| 122 | Tau Protein: Function and Pathology. International Journal of Alzheimer's Disease, 2012, 2012, 1-2.                                                                                                                             | 1.1 | 5         |
| 123 | mRNA Levels of ACh-Related Enzymes in the Hippocampus of THY-Tau22 Mouse: A Model of Human<br>Tauopathy with No Signs of Motor Disturbance. Journal of Molecular Neuroscience, 2016, 58, 411-415.                               | 1.1 | 5         |
| 124 | Tau, Diabetes and Insulin. Advances in Experimental Medicine and Biology, 2019, 1184, 259-287.                                                                                                                                  | 0.8 | 5         |
| 125 | Neuroprotective activity of a virusâ€safe nanofiltered human platelet lysate depleted of extracellular vesicles in Parkinson's disease and traumatic brain injury models. Bioengineering and Translational Medicine, 2023, 8, . | 3.9 | 5         |
| 126 | Stabilizing synapses. Science, 2021, 374, 684-685.                                                                                                                                                                              | 6.0 | 4         |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Impaired Glucose Homeostasis in a Tau Knock-In Mouse Model. Frontiers in Molecular Neuroscience,<br>2022, 15, 841892.                                                             | 1.4 | 4         |
| 128 | Mort neuronale dans les modèles expérimentaux de la maladie de Parkinson. Medecine/Sciences, 2002,<br>18, 457-466.                                                                | 0.0 | 3         |
| 129 | Citicoline is not protective in experimental models of Huntington's disease. Neurobiology of Aging, 2007, 28, 1944-1946.                                                          | 1.5 | 3         |
| 130 | Design and synthesis of fused tetrahydroisoquinoline-iminoimidazolines. European Journal of<br>Medicinal Chemistry, 2015, 106, 15-25.                                             | 2.6 | 3         |
| 131 | Editorial: Purinergic Signaling in Health and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 15.                                                                          | 1.8 | 3         |
| 132 | Impact of chronic doxycycline treatment in the APP/PS1 mouse model of Alzheimer's disease.<br>Neuropharmacology, 2022, 209, 108999.                                               | 2.0 | 3         |
| 133 | Mammalian Brain Ca2+ Channel Activity Transplanted into Xenopus laevis Oocytes. Membranes, 2022,<br>12, 496.                                                                      | 1.4 | 3         |
| 134 | Calpain-2 Mediates MBNL2 Degradation and a Developmental RNA Processing Program in Neurodegeneration. Journal of Neuroscience, 2022, 42, 5102-5114.                               | 1.7 | 3         |
| 135 | A cautionary note on the use of stable transformed cells. Apoptosis: an International Journal on<br>Programmed Cell Death, 2000, 5, 115-116.                                      | 2.2 | 2         |
| 136 | Adenosine Receptors and Alzheimer's Disease. , 2013, , 385-407.                                                                                                                   |     | 2         |
| 137 | What Is the Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease?. , 2018, , 281-308.                                                                           |     | 2         |
| 138 | A ß-Secretase Modulator Decreases Tau Pathology and Preserves Short-Term Memory in a Mouse<br>Model of Neurofibrillary Degeneration. Frontiers in Pharmacology, 2021, 12, 679335. | 1.6 | 2         |
| 139 | RLU and studies using the luciferase reporter gene. Nature Biotechnology, 1998, 16, 702-702.                                                                                      | 9.4 | 1         |
| 140 | In situ examination of tyrosine hydroxylase activity in the rat locus coeruleus using (3?,5?)-[3H2]-?-fluoromethyl-tyrosine as substrate of the enzyme. , 2000, 35, 201-211.      |     | 1         |
| 141 | Minocycline-induced activation of tetracycline-responsive promoter. Neuroscience Letters, 2003, , .                                                                               | 1.0 | 1         |
| 142 | Overexpression of mouse IsK protein fused to green fluorescent protein induces apoptosis of human astroglioma cells. Neurological Research, 2007, 29, 628-631.                    | 0.6 | 1         |
| 143 | C08â€Caffeine is a modifier of age at onset in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, A18.2-A18.                                      | 0.9 | 1         |
| 144 | Adenosine Receptors in Huntington's Disease. , 2013, , 409-434.                                                                                                                   |     | 1         |

| #   | Article                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Mycoplasmas as gene therapy vectors?. Nature Biotechnology, 1999, 17, 4-4.                                                                    | 9.4 | 0         |
| 146 | Adenosine Receptors and Memory Disorders. , 2017, , 175-186.                                                                                  |     | 0         |
| 147 | Adenosine: A Complex Role in Neurodegeneration. Journal of Caffeine and Adenosine Research, 2019, 9, 71-72.                                   | 0.8 | 0         |
| 148 | Tau- but not Aß -pathology enhances NMDAR-dependent depotentiation in AD-mouse models. Acta<br>Neuropathologica Communications, 2019, 7, 202. | 2.4 | 0         |
| 149 | Uncovering bidirectional brain-body interactions in health and disease. Neuropharmacology, 2022, 212, 109073.                                 | 2.0 | 0         |