
Stanley Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. Phytopathology, 2022, 112, 261-270.	2.2	12
2	Occurrence of <i>Macrophomina phaseolina</i> in Israel: Challenges for Disease Management and Crop Germplasm Enhancement. Plant Disease, 2022, 106, 15-25.	1.4	14
3	First report of Colletotrichum aenigma and C. perseae causing anthracnose disease on Capsicum annuum in Israel. Crop Protection, 2022, 152, 105853.	2.1	9
4	Charcoal rot (Macrophomina phaseolina) across melon diversity: evaluating the interaction between the pathogen, plant age and environmental conditions as a step towards breeding for resistance. European Journal of Plant Pathology, 2022, 163, 601-613.	1.7	3
5	Members of the <i>Fusarium oxysporum</i> Complex Causing Wilt Symptoms inÂMedical Cannabis in Israel, Italy, and North America Comprise a Polyphyletic Assemblage. Plant Disease, 2022, 106, 2656-2662.	1.4	1
6	Symbiosis and pathogenicity of <i>Geosmithia</i> and <i>Talaromyces</i> spp. associated with the cypress bark beetles <i>Phloeosinus</i> spp. and their parasitoids. Environmental Microbiology, 2022, 24, 3369-3389.	3.8	3
7	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
8	Characterization of Fusarium population associated with wilt of jojoba in Israel. Plant Pathology, 2021, 70, 793-803.	2.4	3
9	What Determines Host Range and Reproductive Performance of an Invasive Ambrosia Beetle Euwallacea fornicatus; Lessons From Israel and California. Frontiers in Forests and Global Change, 2021, 4, .	2.3	9
10	Effects of steam sterilization on reduction of fungal colony forming units, cannabinoids and terpene levels in medical cannabis inflorescences. Scientific Reports, 2021, 11, 13973.	3.3	3
11	Three novel Ambrosia <i>Fusarium</i> Clade species producing multiseptate "dolphin-shaped―conidia, and an augmented description of <i>Fusarium kuroshium</i> . Mycologia, 2021, 113, 1-21.	1.9	8
12	Fungal Pathogens Affecting the Production and Quality of Medical Cannabis in Israel. Plants, 2020, 9, 882.	3.5	26
13	Effects of cold plasma, gamma and e-beam irradiations on reduction of fungal colony forming unit levels in medical cannabis inflorescences. Journal of Cannabis Research, 2020, 2, 12.	3.2	21
14	Development of a reliable screening technique for determining tolerance to Macrophomina phaseolina in strawberry. European Journal of Plant Pathology, 2020, 157, 707-718.	1.7	15
15	The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Scientific Reports, 2020, 10, 1590.	3.3	52
16	First report of <i>Golovinomyces cichoracearum sensu lato</i> on <i>Cannabis sativa</i> in Israel. New Disease Reports, 2020, 42, 11-11.	0.8	4
17	Three novel Ambrosia <i>Fusarium</i> Clade species producing clavate macroconidia known (<i>F.) Tj ETQq1 1 <i>Euwallacea</i> spp. (Coleoptera: Scolytinae) on woody hosts. Mycologia, 2019, 111, 919-935.</i>	0.784314 1.9	rgBT /Overlo 30
18	Aposymbiotic interactions of three ambrosia beetle fungi with avocado trees. Fungal Ecology, 2019, 39, 117-130.	1.6	14

#	Article	IF	CITATIONS
19	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	3.6	30
20	First Report of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> Tropical Race 4 Causing Fusarium Wilt of Cavendish Bananas in Israel. Plant Disease, 2018, 102, 2655.	1.4	18
21	<i>Fusarium mangiferae</i> localization <i>in planta</i> during initiation and development of mango malformation disease. Plant Pathology, 2017, 66, 924-933.	2.4	6
22	The role of Euwallacea nr. fornicatus (Coleoptera: Scolytinae) in the wilt syndrome of avocado trees in Israel. Phytoparasitica, 2017, 45, 341-359.	1.2	25
23	Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Scientific Reports, 2017, 7, 15839.	3.3	81
24	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	2.5	124
25	Invasive Asian Fusarium – Euwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica, 2016, 44, 435-442.	1.2	52
26	Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis, 2016, 68, 115-128.	2.3	57
27	Tropical race 4 of Panama disease in the Middle East. Phytoparasitica, 2015, 43, 283-293.	1.2	61
28	The occurrence and pathogenicity of Geosmithia spp. and common blue-stain fungi associated with pine bark beetles in planted forests in Israel. European Journal of Plant Pathology, 2015, 143, 627-639.	1.7	18
29	Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism. Fungal Genetics and Biology, 2015, 82, 277-290.	2.1	121
30	Mango nurseries as sources of Fusarium mexicanum, cause of mango malformation disease in central western Mexico. Phytoparasitica, 2015, 43, 427-435.	1.2	9
31	New Insights into Mango Malformation Disease Epidemiology Lead to a New Integrated Management Strategy for Subtropical Environments. Plant Disease, 2014, 98, 1456-1466.	1.4	35
32	Bulb and Root Rot in Lily (<i><scp>L</scp>ilium longiflorum</i>) and Onion (<i><scp>A</scp>llium) Tj ETQqO</i>	0 0 rgBT /0	verlock 10 Tf
33	An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology, 2013, 56, 147-157.	2.1	146
34	<i>Fusarium euwallaceae</i> sp. nov.—a symbiotic fungus of <i>Euwallacea</i> sp., an invasive ambrosia beetle in Israel and California. Mycologia, 2013, 105, 1595-1606.	1.9	136
35	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
36	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	4.7	406

#	Article	IF	CITATIONS
37	Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis, 2012, 58, 245-251.	2.3	42
38	Survival, Host–Pathogen Interaction, and Management of <i>Macrophomina phaseolina</i> on Strawberry in Israel. Plant Disease, 2012, 96, 265-272.	1.4	64
39	Molecular diagnosis of mango malformation disease and phylogeny of Fusarium mangiferae. Phytoparasitica, 2012, 40, 287-297.	1.2	13
40	Identificator: A web-based tool for visual plant disease identification, a proof of concept with a case study on strawberry. Computers and Electronics in Agriculture, 2012, 84, 144-154.	7.7	41
41	The transcription factor SNT2 is involved in fungal respiration and reactive oxidative stress in Fusarium oxysporum and Neurospora crassa. Physiological and Molecular Plant Pathology, 2011, 76, 137-143.	2.5	6
42	Assessment of Resistance Pathways Induced in <i>Arabidopsis thaliana</i> by Hypovirulent <i>Rhizoctonia</i> spp. Isolates. Phytopathology, 2011, 101, 828-838.	2.2	30
43	Inactivation of Snt2, a BAH/PHDâ€containing transcription factor, impairs pathogenicity and increases autophagosome abundance in <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2011, 12, 449-461.	4.2	42
44	Identification and Characterization of a Novel Etiological Agent of Mango Malformation Disease in Mexico, <i>Fusarium mexicanum</i> sp. nov Phytopathology, 2010, 100, 1176-1184.	2.2	60
45	Reevaluation of Factors Affecting Bunch Drop in Date Palm. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 887-893.	1.0	12
46	Morphological, Genetic, and Pathogenic Characterization of <i>Colletotrichum acutatum</i> , the Cause of Anthracnose of Almond in Australia. Phytopathology, 2009, 99, 985-995.	2.2	31
47	Differential protein expression in <i>Colletotrichum acutatum</i> : changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Molecular Plant Pathology, 2008, 9, 171-190.	4.2	46
48	Management, Survival Strategies, and Host Range of Colletotrichum acutatum on Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 66-68.	1.0	35
49	Epidemiological aspects of mango malformation disease caused by Fusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathology, 2007, 56, 257-263.	2.4	38
50	Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology, 2007, 117, 247-265.	1.7	57
51	Identification and Characterization of Benomyl-Resistant and -Sensitive Populations of Colletotrichum gloeosporioides from Statice (Limonium spp.). Phytopathology, 2006, 96, 542-548.	2.2	49
52	A defect in nir1, a nirA-like transcription factor, confers morphological abnormalities and loss of pathogenicity in Colletotrichum acutatum. Molecular Plant Pathology, 2006, 7, 341-354.	4.2	14
53	Effect of Climatic Factors on Powdery Mildew Caused by Sphaerotheca macularis f. sp. Fragariae on Strawberry. European Journal of Plant Pathology, 2006, 114, 283-292.	1.7	61
54	Use of Plasticulture for Strawberry Plant Production. International Journal of Fruit Science, 2005, 4, 21-32.	0.2	21

#	Article	IF	CITATIONS
55	Impaired purine biosynthesis affects pathogenicity of Fusarium oxysporum f. sp. melonis. European Journal of Plant Pathology, 2005, 112, 293-297.	1.7	8
56	Trichoderma Biocontrol of Colletotrichum acutatum and Botrytis cinerea and Survival in Strawberry. European Journal of Plant Pathology, 2004, 110, 361-370.	1.7	149
57	Identification ofTrichoderma biocontrol isolates to clades according to ap-PCR and ITS sequence analyses. Phytoparasitica, 2004, 32, 370-375.	1.2	15
58	Development of a Robust Screening Method for Pathogenicity of Colletotrichum spp. on Strawberry Seedlings Enabling Forward Genetic Studies. Plant Disease, 2004, 88, 845-851.	1.4	14
59	Molecular tools for isolate and community studies of Pyrenomycete fungi. Mycologia, 2004, 96, 439-451.	1.9	17
60	Molecular tools for isolate and community studies of Pyrenomycete fungi. Mycologia, 2004, 96, 439-51.	1.9	4
61	Genetic Diversity and Pathogenic Variability Among Isolates of Colletotrichum Species from Strawberry. Phytopathology, 2003, 93, 219-228.	2.2	80
62	Characterization of Colletotrichum Isolates from Tamarillo, Passiflora, and Mango in Colombia and Identification of a Unique Species from the Genus. Phytopathology, 2003, 93, 579-587.	2.2	104
63	Use of GUS Transformants of Trichoderma harzianum Isolate T39 (TRICHODEX) for Studying Interactions on Leaf Surfaces. Biocontrol Science and Technology, 2002, 12, 401-407.	1.3	7
64	Isolation of Nonpathogenic Mutants of Fusarium oxysporum f. sp. melonis for Biological Control of Fusarium Wilt in Cucurbits. Phytopathology, 2002, 92, 164-168.	2.2	48
65	Use of Green Fluorescent Protein-Transgenic Strains to Study Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum. Phytopathology, 2002, 92, 743-749.	2.2	61
66	Survival in Soil of Colletotrichum acutatum and C. gloeosporioides Pathogenic on Strawberry. Plant Disease, 2002, 86, 965-970.	1.4	60
67	Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants. Phytopathology, 2001, 91, 986-992.	2.2	135
68	Genetic Diversity Within Colletotrichum acutatum sensu Simmonds. Phytopathology, 2001, 91, 586-592.	2.2	59
69	Molecular Analyses of Colletotrichum Species from Almond and Other Fruits. Phytopathology, 2000, 90, 608-614.	2.2	115
70	Reliable detection of the fungal pathogenfusarium oxysporum f.sp.albedinis, causal agent of bayoud disease of date palm, using molecular techniques. Phytoparasitica, 2000, 28, 341-348.	1.2	18
71	Characterization of Colletotrichum acutatum Causing Anthracnose of Anemone (Anemone coronaria) Tj ETQq1	1 0.78431 3.1	.4 rgBT /Ove
	Expression of Pectate Lyase from Colletotrichum gloeosporioides in C. magna Promotes		

Expression of Pectate Lyase from Collectorichum gloeosporioides in C. magna Promotes
Pathogenicity. Molecular Plant-Microbe Interactions, 2000, 13, 887-891.

2.6 44

#	Article	IF	CITATIONS
73	Biochemical Analysis of Plant Protection Afforded by a Nonpathogenic Endophytic Mutant of Colletotrichum magna1. Plant Physiology, 1999, 119, 795-804.	4.8	138
74	Use of GUS Transformants of Fusarium subglutinans for Determining Etiology of Mango Malformation Disease. Phytopathology, 1999, 89, 456-461.	2.2	69
75	Characterization of Colletotrichum Species Responsible for Anthracnose Diseases of Various Fruits. Plant Disease, 1998, 82, 596-605.	1.4	342
76	Characterization of a linear DNA plasmid from the filamentous fungal plant pathogen Glomerella musae [Anamorph: Colletotrichum musae (Berk. & Curt.) Arx.]. Current Genetics, 1997, 32, 152-156.	1.7	4
77	Response from Rodriguez and Freeman. Trends in Microbiology, 1993, 1, 254.	7.7	0