
Luuk K Koopal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307318/publications.pdf Version: 2024-02-01

LIUK K KOODAL

#	Article	IF	CITATIONS
1	Proton binding to humic nano particles: electrostatic interaction and the condensation approximation. Physical Chemistry Chemical Physics, 2022, 24, 704-714.	2.8	2
2	Effect of humic acid on lysozyme interaction with montmorillonite and kaolinite. Science of the Total Environment, 2022, 834, 155370.	8.0	4
3	Spectroscopic investigation of conformational changes in urease caused by interaction with humic acid. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112510.	5.0	2
4	Facet-dependent surface charge and Pb2+ adsorption characteristics of hematite nanoparticles: CD-MUSIC-eSGC modeling. Environmental Research, 2021, 196, 110383.	7.5	6
5	Conformational modifications of lysozyme caused by interaction with humic acid studied with spectroscopy. Science of the Total Environment, 2021, 768, 144858.	8.0	7
6	Quantitative Characterization of the Site Density and the Charged State of Functional Groups on Biochar. ACS Sustainable Chemistry and Engineering, 2021, 9, 2600-2608.	6.7	17
7	Regional differences in mineral weathering characteristics of zonal soils under intensive agriculture. Applied Clay Science, 2021, 215, 106336.	5.2	4
8	Goethite effects on transport and activity of lysozyme with humic acid in quartz sand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125319.	4.7	4
9	Equilibrium mono- and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding. Advances in Colloid and Interface Science, 2020, 280, 102138.	14.7	42
10	Mixed ad/desorption kinetics unraveled with the equilibrium adsorption isotherm. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 709-722.	4.7	16
11	Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: Assessment of sorbent interactions. European Journal of Soil Science, 2019, 70, 1098-1107.	3.9	10
12	Formation and Morphology Evolution from Ferrihydrite to Hematite in the Presence of Tartaric Acid. ACS Earth and Space Chemistry, 2019, 3, 562-570.	2.7	9
13	Phosphate speciation on Al-substituted goethite: ATR-FTIR/2D-COS and CD-MUSIC modeling. Environmental Science: Nano, 2019, 6, 3625-3637.	4.3	25
14	Proton and Copper Binding to Humic Acids Analyzed by XAFS Spectroscopy and Isothermal Titration Calorimetry. Environmental Science & amp; Technology, 2018, 52, 4099-4107.	10.0	48
15	Roles of different types of oxalate surface complexes in dissolution process of ferrihydrite aggregates. Scientific Reports, 2018, 8, 2060.	3.3	17
16	Hydroxy-interlayered minerals in the Holocene paleosol on the southernmost Loess Plateau, China. Applied Clay Science, 2018, 153, 70-77.	5.2	10
17	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. Environmental Science & Technology, 2018, 52, 1348-1356.	10.0	45
18	Comparison of strontium retardation for kaolinite, illite, vermiculite and allophane. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 409-419.	1.5	9

#	Article	IF	CITATIONS
19	Effect of citrate on the species and levels of Al impurities in ferrihydrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 140-147.	4.7	8
20	Influence of humic acid on transport, deposition and activity of lysozyme in quartz sand. Environmental Pollution, 2018, 242, 298-306.	7.5	11
21	CD-MUSIC-EDL Modeling of Pb ²⁺ Adsorption on Birnessites: Role of Vacant and Edge Sites. Environmental Science & Technology, 2018, 52, 10522-10531.	10.0	30
22	The preferential retention of VIZn over IVZn on birnessite during dissolution/desorption. Applied Clay Science, 2018, 161, 169-175.	5.2	8
23	Strontium adsorption and penetration in kaolinite at low Sr ²⁺ concentration. Soil Science and Plant Nutrition, 2017, 63, 14-17.	1.9	12
24	Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 2017, 504, 457-467.	9.4	104
25	Local structure of Cu2+ in Cu-doped hexagonal turbostratic birnessite and Cu2+ stability under acid treatment. Chemical Geology, 2017, 466, 512-523.	3.3	31
26	Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. Journal of Colloid and Interface Science, 2016, 473, 141-151.	9.4	59
27	Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena, 2016, 139, 191-198.	5.0	97
28	Surfactant adsorption to soil components and soils. Advances in Colloid and Interface Science, 2016, 231, 59-102.	14.7	95
29	Effects of crystallite size on the structure and magnetism of ferrihydrite. Environmental Science: Nano, 2016, 3, 190-202.	4.3	77
30	Desorption ofmyo-inositol hexakisphosphate and phosphate from goethite by different reagents. Journal of Plant Nutrition and Soil Science, 2015, 178, 878-887.	1.9	20
31	Structure and properties of vanadium(V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb2+ from solutions. Journal of Hazardous Materials, 2015, 288, 80-88.	12.4	30
32	High Co-doping promotes the transition of birnessite layer symmetry from orthogonal to hexagonal. Chemical Geology, 2015, 410, 12-20.	3.3	27
33	Effect of soil fulvic and humic acid on binding of Pb to goethite–water interface: Linear additivity and volume fractions of HS in the Stern layer. Journal of Colloid and Interface Science, 2015, 457, 121-130.	9.4	52
34	Size-dependent sorption of myo-inositol hexakisphosphate and orthophosphate on nano-Î ³ -Al2O3. Journal of Colloid and Interface Science, 2015, 451, 85-92.	9.4	33
35	Effects of phosphate and silicate on the transformation of hydroxycarbonate green rust to ferric oxyhydroxides. Geochimica Et Cosmochimica Acta, 2015, 171, 1-14.	3.9	27
36	Characteristics of the fifth paleosol complex (S5) in the southernmost part of the Chinese Loess Plateau and its paleo-environmental significance. Catena, 2014, 122, 130-139.	5.0	6

#	Article	lF	CITATIONS
37	One-step synthesis of δ-MnO 2 nanoparticles using ascorbic acid and their scavenging properties to Pb(II), Zn(II) and methylene blue. Materials Chemistry and Physics, 2014, 148, 1149-1156.	4.0	12
38	Zn sorption to biogenic bixbyite-like Mn 2 O 3 produced by Bacillus CUA isolated from soil: XAFS study with constraints on sorption mechanism. Chemical Geology, 2014, 389, 82-90.	3.3	18
39	Interaction between lysozyme and humic acid in layer-by-layer assemblies: Effects of pH and ionic strength. Journal of Colloid and Interface Science, 2014, 430, 40-46.	9.4	17
40	Shape Evolution Synthesis of Monodisperse Spherical, Ellipsoidal, and Elongated Hematite (α-Fe ₂ O ₃) Nanoparticles Using Ascorbic Acid. Crystal Growth and Design, 2014, 14, 157-164.	3.0	46
41	Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena, 2014, 121, 22-30.	5.0	92
42	Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: Influences of reaction conditions and underlying mechanisms. Chemical Geology, 2013, 351, 57-65.	3.3	36
43	Lead Binding to Soil Fulvic and Humic Acids: NICA-Donnan Modeling and XAFS Spectroscopy. Environmental Science & Technology, 2013, 47, 11634-11642.	10.0	114
44	Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease. Environmental Science & Technology, 2013, 47, 5050-5056.	10.0	63
45	Proton binding to soil humic and fulvic acids: Experiments and NICA-Donnan modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1152-1158.	4.7	39
46	Effects of Fe doping on the structures and properties of hexagonal birnessites – Comparison with Co and Ni doping. Geochimica Et Cosmochimica Acta, 2013, 117, 1-15.	3.9	71
47	Microstructure, Interaction Mechanisms, and Stability of Binary Systems Containing Goethite and Kaolinite. Soil Science Society of America Journal, 2012, 76, 389-398.	2.2	28
48	Wetting of Solid Surfaces: Fundamentals and Charge effects. Advances in Colloid and Interface Science, 2012, 179-182, 29-42.	14.7	78
49	Sorption of tetracycline on organo-montmorillonites. Journal of Hazardous Materials, 2012, 225-226, 28-35.	12.4	82
50	One-step synthesis of sea urchin-like α-MnO2 using KIO4 as the oxidant and its oxidation of arsenite. Materials Letters, 2012, 77, 60-62.	2.6	16
51	Influence of lysozyme complexation with purified Aldrich humic acid on lysozyme activity. European Journal of Soil Science, 2012, 63, 550-557.	3.9	12
52	Humic substance charge determination by titration with a flexible cationic polyelectrolyte. Geochimica Et Cosmochimica Acta, 2011, 75, 5749-5761.	3.9	31
53	Environmental significance of mineral weathering and pedogenesis of loess on the southernmost Loess Plateau, China. Geoderma, 2011, 163, 219-226.	5.1	41
54	Formation and Transformation of Iron Oxide–Kaolinite Associations in the Presence of Iron(II). Soil Science Society of America Journal, 2011, 75, 45-55.	2.2	18

#	Article	IF	CITATIONS
55	Predictive model of cationic surfactant binding to humic substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379, 70-78.	4.7	22
56	Effect of 1-1 electrolyte concentration on the adsorption/desorption of copper ion on synthetic birnessite. Journal of Soils and Sediments, 2010, 10, 879-885.	3.0	11
57	Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils. Hydrology and Earth System Sciences, 2010, 14, 1787-1799.	4.9	24
58	Electrostatic potentials of humic acid: Fluorescence quenching measurements and comparison with model calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 27-32.	4.7	9
59	Binding of alkylpyridinium chloride surfactants to sodium polystyrene sulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 69-75.	4.7	15
60	Measuring very negative water potentials with polymer tensiometers: principles, performance and applications. Biologia (Poland), 2009, 64, 438-442.	1.5	12
61	Interaction between Humic Acid and Lysozyme, Studied by Dynamic Light Scattering and Isothermal Titration Calorimetry. Environmental Science & Technology, 2009, 43, 591-596.	10.0	75
62	Humic acid protein complexation. Geochimica Et Cosmochimica Acta, 2008, 72, 2090-2099.	3.9	84
63	Adsorption of Heterogeneously Charged Nanoparticles on a Variably Charged Surface by the Extended Surface Complexation Approach:  Charge Regulation, Chemical Heterogeneity, and Surface Complexation. Journal of Physical Chemistry B, 2008, 112, 1339-1349.	2.6	18
64	DETERMINATION OF THE POINT-OF-ZERO CHARGE OF MANGANESE OXIDES WITH DIFFERENT METHODS INCLUDING AN IMPROVED SALT TITRATION METHOD. Soil Science, 2008, 173, 277-286.	0.9	123
65	Protein Adsorption at Solid Surfaces and Protein Complexation with Humic Acids. Revista De La Ciencia Del Suelo Y Nutricion Vegetal, 2008, 8, .	0.4	2
66	Competitive Adsorption of Nonionic Surfactant and Nonionic Polymer on Silica. Langmuir, 2007, 23, 5532-5540.	3.5	48
67	New Polymer Tensiometers: Measuring Matric Pressures Down to the Wilting Point. Vadose Zone Journal, 2007, 6, 196-202.	2.2	45
68	Binding of cationic surfactants to humic substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 29-39.	4.7	57
69	Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 2007, 309, 194-224.	9.4	947
70	Modeling the Interactions between Humics, Ions, and Mineral Surfacesâ€. Environmental Science & Technology, 2006, 40, 7473-7480.	10.0	70
71	Adsorption of Humic Substances on Goethite: Comparison between Humic Acids and Fulvic Acidsâ€. Environmental Science & Technology, 2006, 40, 7494-7500.	10.0	226
72	Modeling Metal–Particle Interactions With an Emphasis on Natural Organic Matter. Environmental Science & Technology, 2006, 40, 7459-7466.	10.0	41

#	Article	IF	CITATIONS
73	Confinement-Induced Symmetry Breaking of Interfacial Surfactant Layers. Journal of Physical Chemistry B, 2006, 110, 8756-8763.	2.6	9
74	Surface charge regulation upon polyelectrolyte adsorption, hematite, polystyrene sulfonate, surface charge regulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 291, 13-23.	4.7	28
75	Thinning of wetting films formed from aqueous solutions of non-ionic surfactant. Journal of Colloid and Interface Science, 2006, 301, 210-216.	9.4	8
76	Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. Journal of Colloid and Interface Science, 2006, 302, 442-457.	9.4	71
77	Electrostatic interaction models for ion binding to humic substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 104-113.	4.7	43
78	lon binding to natural organic matter: General considerations and the NICA–Donnan model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 40-54.	4.7	211
79	Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report). Pure and Applied Chemistry, 2005, 77, 1753-1805.	1.9	498
80	Influence of NaCl on the Behavior of PEOâ^'PEOâ^'PEO Triblock Copolymers in Solution, at Interfaces, and in Asymmetric Liquid Films. Langmuir, 2005, 21, 4954-4963.	3.5	38
81	Analysis of Copper Binding in the Ternary System Cu2+/Humic Acid/Goethite at Neutral to Acidic pH. Environmental Science & Technology, 2005, 39, 4886-4893.	10.0	63
82	Confinement-Induced Phase Transition and Hysteresis in Colloidal Forces for Surfactant Layers on Hydrophobic Surfaces. Langmuir, 2005, 21, 10089-10095.	3.5	15
83	Modeling of Confinement-Induced Phase Transitions for Surfactant Layers on Amphiphilic Surfaces. Langmuir, 2005, 21, 11534-11545.	3.5	18
84	Interactions of calcium and fulvic acid at the goethite-water interface. Geochimica Et Cosmochimica Acta, 2005, 69, 325-339.	3.9	134
85	Adsorption of Nonionic Surfactants on Cellulose Surfaces:  Adsorbed Amounts and Kinetics. Langmuir, 2005, 21, 7768-7775.	3.5	48
86	Application of the NICA-Donnan model for proton, copper and uranyl binding to humic acid. Radiochimica Acta, 2004, 92, 567-574.	1.2	32
87	Adsorption of Cationic Surfactants on Silica Surface: 1. Adsorption Isotherms and Surface Charge. Colloid Journal, 2004, 66, 38-43.	1.3	16
88	Adsorption of Cationic Surfactants on Silica Surface: 2. Comparison of Theory with Experiment. Colloid Journal, 2004, 66, 44-47.	1.3	5
89	Binding of ionic surfactants to purified humic acid. Journal of Colloid and Interface Science, 2004, 275, 360-367.	9.4	73
90	Self-Consistent Field Analysis of Ionic Surfactant Adsorption Regulation in the Aqueous Film between Two Neutral Solids, Journal of Physical Chemistry B, 2004, 108, 3633-3643	2.6	7

#	Article	IF	CITATIONS
91	Confinement-Induced Phase Behavior and Adsorption Regulation of Ionic Surfactants in the Aqueous Film between Charged Solids. Journal of Physical Chemistry B, 2004, 108, 15033-15042.	2.6	19
92	Adsorption of Humic Acid on Goethite:Â Isotherms, Charge Adjustments, and Potential Profiles. Langmuir, 2004, 20, 689-700.	3.5	134
93	Mixed adsorption of poly(vinylpyrrolidone) and sodium dodecylbenzenesulfonate on kaolinite. Journal of Colloid and Interface Science, 2003, 260, 1-8.	9.4	61
94	Annealed Star-Branched Polyelectrolytes in Solution. Macromolecules, 2002, 35, 9176-9190.	4.8	67
95	Selective Separation of Fine Particles by a New Flotation Approach. Separation Science and Technology, 2002, 37, 2097-2112.	2.5	8
96	Remediation of Fine Fractions of Dredged Sediments by Flotation. Environmental Technology (United) Tj ETQqO	0 0 rgBT /0 2:9	Dverlock 10
97	Theoretical modeling of cationic surfactants aggregation at the silica/aqueous solution interface: Effects of pH and ionic strength. Physical Chemistry Chemical Physics, 2002, 4, 5846-5855.	2.8	9
98	Heterocoagulation of Hydrophobic Particle and Bubble during Microflotation. Colloid Journal, 2002, 64, 457-465.	1.3	3
99	Intensification of electrodialysis by applying a non-stationary electric field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176, 195-212.	4.7	71
100	A simple model for adsorption kinetics at charged solid–liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192, 93-107.	4.7	52
101	Microflotation Suppression and Enhancement Caused by Particle/Bubble Electrostatic Interaction. Journal of Colloid and Interface Science, 2001, 237, 208-223.	9.4	19
102	Humic matter and contaminants. General aspects and modeling metal ion binding. Pure and Applied Chemistry, 2001, 73, 2005-2016.	1.9	108
103	Monodisperse, nonporous, spherical silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166, 171-176.	4.7	47
104	The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. International Journal of Mineral Processing, 2000, 59, 215-224.	2.6	110
105	The effect of cationic surfactants on wetting, colloid stability and flotation of silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 15-25.	4.7	85
106	Volume and structure of humic acids studied by viscometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 213-224.	4.7	107
107	Flotation of soot particles from a sandy soil sludge. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 293-301.	4.7	11
108	Immobilisation of humic acids and binding of nitrophenol to immobilised humics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 201-212.	4.7	28

#	Article	IF	CITATIONS
109	Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 147-166.	4.7	708
110	Titration microcalorimetry of poly(vinylpyrrolidone) and sodium dodecylbenzenesulphonate in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160, 237-246.	4.7	24
111	Charge Adjustments upon Adsorption of a Weak Polyelectrolyte to a Mineral Oxide: The Hematite–Humic Acid System. Journal of Colloid and Interface Science, 1999, 212, 176-185.	9.4	38
112	Proton Binding to Humic Acids: Electrostatic and Intrinsic Interactions. Journal of Colloid and Interface Science, 1999, 217, 37-48.	9.4	105
113	Screening in Solutions of Star-Branched Polyelectrolytes. Macromolecules, 1999, 32, 2365-2377.	4.8	93
114	Kinetics of Humic Acid Adsorption at Solid-Water Interfaces. Environmental Science & Technology, 1999, 33, 2739-2744.	10.0	128
115	Metal Ion Adsorption to Complexes of Humic Acid and Metal Oxides:Â Deviations from the Additivity Rule. Environmental Science & Technology, 1999, 33, 3892-3897.	10.0	162
116	Flotation of PAH-Contaminated Dredged Sludge. ACS Symposium Series, 1999, , 248-259.	0.5	0
117	Interaction theory for double electric layers of dissimilar particles for equilibrium regime of surface ionization Low surface potentials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 131, 51-62.	4.7	5
118	Chemical immobilisation of humic acid on silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141, 385-395.	4.7	73
119	Surface and volume charge densities of monodisperse porous silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142, 303-313.	4.7	51
120	Desorption of Humic Acids from an Iron Oxide Surface. Environmental Science & Technology, 1998, 32, 2572-2577.	10.0	102
121	Adsorption of Humic Acid to Mineral Particles. 1. Specific and Electrostatic Interactions. Langmuir, 1998, 14, 2810-2819.	3.5	325
122	Adsorption of Humic Acids to Mineral Particles. 2. Polydispersity Effects with Polyelectrolyte Adsorption. Langmuir, 1998, 14, 4210-4216.	3.5	145
123	Polymer adsorption on a patchwise heterogeneous surface. , 1998, , 153-160.		8
124	Semianalytical Methods To Determine First-Order Rate Constant Distributions. Langmuir, 1997, 13, 961-969.	3.5	7
125	Critical Point Wetting for Binary Two-Phase Polymerâ^'Solvent Mixtures on Solid Interfaces. Langmuir, 1997, 13, 5751-5755.	3.5	8
126	Adsorption of Weak Polyelectrolytes on Surfaces with a Variable Charge. Self-Consistent-Field Calculations. Langmuir, 1997, 13, 4413-4421.	3.5	50

#	Article	IF	CITATIONS
127	Adsorption of Cationic Surfactants on Silica. Comparison of Experiment and Theory. Langmuir, 1997, 13, 673-681.	3.5	124
128	Self-Consistent Field Theory for the Adsorption of Alkanes on Solid Surfaces. Langmuir, 1996, 12, 1863-1869.	3.5	10
129	Metal ion binding by natural organic matter: From the model to the field. Geochimica Et Cosmochimica Acta, 1996, 60, 2503-2513.	3.9	229
130	Adsorption of Cationic Surfactants on Silica. Surface Charge Effects. Langmuir, 1996, 12, 3188-3194.	3.5	194
131	Humic Substances Considered as a Heterogeneous Donnan Gel Phase. Environmental Science & Technology, 1996, 30, 1805-1813.	10.0	292
132	Self-consistent field theory for wetting of binary polymer–solvent mixtures on rigid and soft interfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 579-587.	1.7	19
133	Self-Assembly of Ionic Surfactants Adsorbed on Mineral Oxides: Surface Charge and Salt Effects. ACS Symposium Series, 1996, , 78-103.	0.5	4
134	Chapter 3.5 Ion adsorption on mineral oxide surfaces. Studies in Surface Science and Catalysis, 1996, 99, 757-796.	1.5	16
135	Metal Ion Binding by Humic Acid:Â Application of the NICA-Donnan Model. Environmental Science & Technology, 1996, 30, 1687-1698.	10.0	498
136	Mineral hydroxides: from homogeneous to heterogeneous modelling. Electrochimica Acta, 1996, 41, 2293-2305.	5.2	83
137	Adsorption of Cationic and Anionic Surfactants on Metal Oxide Surfaces: Surface Charge Adjustment and Competition Effects. Journal of Colloid and Interface Science, 1996, 177, 478-489.	9.4	53
138	An Analytical Isotherm Equation (CONICA) for Nonideal Mono- and Bidentate Competitive Ion Adsorption to Heterogeneous Surfaces. Journal of Colloid and Interface Science, 1996, 183, 35-50.	9.4	25
139	Self-Consistent-Field Description ofn-Alkanes in Bulk and at the Liquidâ^'Vapor Interface. The Journal of Physical Chemistry, 1996, 100, 3607-3616.	2.9	11
140	Adsorption of Cationic and Anionic Surfactants on Charged Metal Oxide Surfaces. Journal of Colloid and Interface Science, 1995, 170, 85-97.	9.4	138
141	Analysis of Metal-Ion Binding by a Peat Humic Acid Using a Simple Electrostatic Model. Journal of Colloid and Interface Science, 1995, 175, 448-460.	9.4	81
142	Thin Hydrocarbon and Water Films on Bare and Methylated Silica: Vapor Adsorption, Wettability, Adhesion, and Surface Forces. Langmuir, 1995, 11, 1701-1710.	3.5	40
143	Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochimica Et Cosmochimica Acta, 1995, 59, 1101-1112.	3.9	149
144	Metal Ion Binding to Humic Substances: Application of the Non-Ideal Competitive Adsorption Model. Environmental Science & Technology, 1995, 29, 446-457.	10.0	545

#	Article	IF	CITATIONS
145	Analytical Isotherm Equations for Multicomponent Adsorption to Heterogeneous Surfaces. Journal of Colloid and Interface Science, 1994, 166, 51-60.	9.4	276
146	Wettability: thermodynamic relationships between vapour adsorption and wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 89, 157-167.	4.7	51
147	Heterogeneity Analysis for Binding Data Using an Adapted Smoothing Spline Technique. Environmental Science & Technology, 1994, 28, 1037-1047.	10.0	30
148	Analysis of the Rate of Dissociation of Ligand Complexes. Environmental Science & Technology, 1994, 28, 1048-1053.	10.0	18
149	Preparation and characterization of iridium and titanium oxide layers on silica particles. Journal of Electroanalytical Chemistry, 1993, 352, 107-118.	3.8	14
150	Lattice models for the description of partitioning/ adsorption and retention in reversed-phase liquid chromatography, including surface and shape effects. Journal of Chromatography A, 1993, 656, 135-196.	3.7	61
151	Surfactant adsorption at liquid/liquid interfaces Comparison of experimental results with self-consistent field lattice calculations and molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 217-229.	4.7	25
152	Modelling of the double layer and electrosorption of a patchwise heterogeneous surface on the basis off its homogeneous analogue 1. Non-interacting patches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 73, 201-209.	4.7	14
153	Proton binding to humic substances. 1. Electrostatic effects. Environmental Science & Technology, 1993, 27, 2005-2014.	10.0	159
154	Determination of proton affinity distributions for humic substances. Environmental Science & Technology, 1993, 27, 846-856.	10.0	92
155	Adsorption on heterogeneous surfaces. Calculation of the adsorption energy distribution function or the affinity spectrum. Langmuir, 1993, 9, 2593-2605.	3.5	39
156	Proton binding to humic substances. 2. Chemical heterogeneity and adsorption models. Environmental Science & Technology, 1993, 27, 2015-2022.	10.0	113
157	Adsorption of nonionic surfactants on hydrophilic surfaces. An experimental and theoretical study on association in the adsorbed layer. Langmuir, 1992, 8, 2228-2239.	3.5	115
158	Adsorption of ionic surfactants on variable-charge surfaces. 2. Molecular architecture and structure of the adsorbed layer. Langmuir, 1992, 8, 2660-2665.	3.5	66
159	Comparison of semianalytical methods to analyze complexation with heterogeneous ligands. Environmental Science & Technology, 1992, 26, 763-771.	10.0	68
160	Adsorption of ionic surfactants on variable-charge surfaces. 1. Charge effects and structure of the adsorbed layer. Langmuir, 1992, 8, 2649-2659.	3.5	133
161	Adsorption of ionic surfactants on constant charge surfaces. Analysis based on a self-consistent field lattice model. Langmuir, 1992, 8, 1594-1602.	3.5	59
162	Partitioning and adsorption of chain molecules at chemically modified surfaces in reversed phase liquid chromatography. The Journal of Physical Chemistry, 1991, 95, 6285-6297.	2.9	39

#	Article	IF	CITATIONS
163	Micellization of ionic surfactants: calculations based on a self-consistent field lattice model. The Journal of Physical Chemistry, 1991, 95, 9569-9578.	2.9	46
164	Determination of H+ and metal ion affinity distributions for humic substances. Water, Air, and Soil Pollution, 1991, 57-58, 339-349.	2.4	19
165	Determination of adsorption affinity distributions: A general framework for methods related to local isotherm approximations. Journal of Colloid and Interface Science, 1990, 135, 410-426.	9.4	81
166	Electrochemistry of a model for patchwise heterogeneous surfaces: The rutile-hematite system. Journal of Colloid and Interface Science, 1990, 134, 122-138.	9.4	69
167	Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Analytica Chimica Acta, 1990, 232, 189-207.	5.4	140
168	Adsorption of organic ions at the solid—electrolyte interface. Interpretation of common intersection points. Colloids and Surfaces, 1990, 51, 339-357.	0.9	29
169	Association and adsorption of nonionic flexible chain surfactants. Langmuir, 1990, 6, 1478-1484.	3.5	46
170	Electrosorption on random and patchwise heterogeneous surfaces: electrical double-layer effects. Journal of Colloid and Interface Science, 1989, 128, 188-200.	9.4	58
171	Adsorption of interacting long-chain surfactant molecules: Isotherm equations. Journal of Colloid and Interface Science, 1988, 126, 493-507.	9.4	22
172	Electrophoretic study of polymer adsorption: Dextran, polyethylene oxide and polyvinyl alcohol on silver iodide. Journal of Colloid and Interface Science, 1988, 121, 49-62.	9.4	45
173	Contact angles on particles and plates. Colloids and Surfaces, 1987, 27, 57-64.	0.9	96
174	Metal ion adsorption on heterogeneous surfaces: Adsorption models. Journal of Colloid and Interface Science, 1987, 116, 511-522.	9.4	160
175	Surface ionization and complexation models: A comparison of methods for determining model parameters. Journal of Colloid and Interface Science, 1987, 118, 117-136.	9.4	103
176	The effect of particle size on the stability of haematite (α-Fe2O3) hydrosols. Colloids and Surfaces, 1987, 28, 67-83.	0.9	42
177	Contact angles on particles and plates. Colloids and Surfaces, 1987, 27, 57-64.	0.9	28
178	Chain length effects in the adsorption of surfactants at aqueous interfaces: Comparison of existing adsorption models with a new model. Journal of Colloid and Interface Science, 1986, 112, 362-379.	9.4	30
179	Interfacial electrochemistry of haematite (α-Fe2O3): homodisperse and heterodisperse sols. Colloids and Surfaces, 1986, 21, 457-468.	0.9	74
180	Adsorption of ionic surfactants on charged solids. Adsorption models. Colloids and Surfaces, 1986, 17, 371-388.	0.9	30

#	Article	IF	CITATIONS
181	Electrolyte adsorption on heterogeneous surfaces: adsorption models. Journal of Colloid and Interface Science, 1986, 109, 219-228.	9.4	207
182	Calculation of the adsorption energy distribution from the adsorption isotherm by singular value decomposition. Colloids and Surfaces, 1985, 14, 87-95.	0.9	27
183	Surface heterogeneity analysis by gas adsorption: Improved calculation of the adsorption energy distribution function using a new algorithm named CAESAR. Journal of Colloid and Interface Science, 1985, 105, 183-196.	9.4	37
184	The effect of polyethylene oxide molecular weight on determination of its concentration in aqueous solutions. Talanta, 1982, 29, 495-501.	5.5	65
185	The unperturbed conformation and interaction parameters of polyvinylalcohol in aqueous solutions. Polydispersity effects. Colloid and Polymer Science, 1981, 259, 490-498.	2.1	13
186	The effect of polymer polydispersity on the adsorption isotherm. Journal of Colloid and Interface Science, 1981, 83, 116-129.	9.4	65
187	Characterization of adsorbed polymers from double layer experiments. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 100, 895-912.	0.1	44
188	Characterization of polymers in the adsorbed state by double layer measurements. The silver iodide + poly(vinyl alcohol) system. Faraday Discussions of the Chemical Society, 1975, 59, 230.	2.2	71
189	Polymer adsorption and its effect on the stability of hydrophobic colloids. Kolloid-Zeit & Zeit Fuer Polymers, 1972, 250, 689-702.	0.7	129