Zhenhua Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3307059/publications.pdf

Version: 2024-02-01

74 2,371 29 47
papers citations h-index g-index

75 75 75 1907 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Science Advances, 2019, 5, eaau6062.	10.3	146
2	Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nature Communications, 2020, 11 , 762 .	12.8	135
3	Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9, 2928.	12.8	134
4	Programmable Acoustic Metasurfaces. Advanced Functional Materials, 2019, 29, 1808489.	14.9	130
5	Lamb wave frequency–wavenumber analysis and decomposition. Journal of Intelligent Material Systems and Structures, 2014, 25, 1107-1123.	2.5	106
6	Delamination detection and quantification on laminated composite structures with Lamb waves and wavenumber analysis. Journal of Intelligent Material Systems and Structures, 2015, 26, 1723-1738.	2.5	89
7	Lamb wave Structural Health Monitoring Using a Hybrid PZT-Laser Vibrometer Approach. Structural Health Monitoring, 2013, 12, 469-483.	7.5	79
8	A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab on A Chip, 2020, 20, 1298-1308.	6.0	76
9	Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10976-10982.	7.1	72
10	Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods. Ultrasonics, 2015, 62, 203-212.	3.9	70
11	Guided wave phased array beamforming and imaging in composite plates. Ultrasonics, 2016, 68, 43-53.	3.9	69
12	Surface acoustic waves enable rotational manipulation of <i>Caenorhabditis elegans</i> Lab on A Chip, 2019, 19, 984-992.	6.0	69
13	Harmonic acoustics for dynamic and selective particle manipulation. Nature Materials, 2022, 21, 540-546.	27. 5	66
14	Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation. ACS Nano, 2020, 14, 14635-14645.	14.6	62
15	Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Science Advances, 2020, 6, .	10.3	59
16	An acoustofluidic device for efficient mixing over a wide range of flow rates. Lab on A Chip, 2020, 20, 1238-1248.	6.0	56
17	Rapid guided wave delamination detection and quantification in composites using global-local sensing. Smart Materials and Structures, 2016, 25, 085042.	3.5	54
18	Guided wave imaging for detection and evaluation of impact-induced delamination in composites. Smart Materials and Structures, 2015, 24, 105019.	3.5	51

#	Article	IF	CITATIONS
19	Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates. Mechanical Systems and Signal Processing, 2019, 121, 158-170.	8.0	46
20	Acoustic streaming vortices enable contactless, digital control of droplets. Science Advances, 2020, 6, eaba0606.	10.3	42
21	On-chip stool liquefaction <i>via</i> acoustofluidics. Lab on A Chip, 2019, 19, 941-947.	6.0	38
22	Electrochemical micro-aptasensors for exosome detection based on hybridization chain reaction amplification. Microsystems and Nanoengineering, 2021, 7, 63.	7.0	38
23	Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates. Scientific Reports, 2017, 7, 40004.	3.3	37
24	A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing. ACS Nano, 2020, 14, 3159-3169.	14.6	36
25	Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices. Science Advances, 2021, 7, .	10.3	34
26	Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. Lab on A Chip, 2020, 20, 3399-3409.	6.0	33
27	Acoustic tweezers based on circular, slanted-finger interdigital transducers for dynamic manipulation of micro-objects. Lab on A Chip, 2020, 20, 987-994.	6.0	32
28	Study on crack scattering in aluminum plates with Lamb wave frequency–wavenumber analysis. Smart Materials and Structures, 2013, 22, 065019.	3.5	31
29	Damage localization with fiber Bragg grating Lamb wave sensing through adaptive phased array imaging. Structural Health Monitoring, 2019, 18, 334-344.	7.5	31
30	Contactless, programmable acoustofluidic manipulation of objects on water. Lab on A Chip, 2019, 19, 3397-3404.	6.0	30
31	Visualization of solitary waves via laser Doppler vibrometry for heavy impurity identification in a granular chain. Smart Materials and Structures, 2013, 22, 035016.	3.5	29
32	Open source acoustofluidics. Lab on A Chip, 2019, 19, 2404-2414.	6.0	28
33	Core–skin debonding detection in honeycomb sandwich structures through guided wave wavefield analysis. Journal of Intelligent Material Systems and Structures, 2019, 30, 1306-1317.	2.5	28
34	Sonoporation: Past, Present, and Future. Advanced Materials Technologies, 2022, 7, .	5.8	28
35	Elastic Phased Diffraction Gratings for Manipulation of Ultrasonic Guided Waves in Solids. Physical Review Applied, 2019, 11, .	3.8	27
36	Fluorescence-based sorting of <i>Caenorhabditis elegans via</i> acoustofluidics. Lab on A Chip, 2020, 20, 1729-1739.	6.0	27

#	Article	IF	Citations
37	Fabrication of tunable, high-molecular-weight polymeric nanoparticles <i>via</i> ultrafast acoustofluidic micromixing. Lab on A Chip, 2021, 21, 2453-2463.	6.0	27
38	Case study of guided wave propagation in a one-side water-immersed steel plate. Case Studies in Nondestructive Testing and Evaluation, 2015, 3, 1-8.	1.7	26
39	Acoustoelectronic nanotweezers enable dynamic and large-scale control of nanomaterials. Nature Communications, 2021, 12, 3844.	12.8	22
40	Low-frequency flexural wave based microparticle manipulation. Lab on A Chip, 2020, 20, 1281-1289.	6.0	21
41	Wavefront modulation and controlling for Lamb waves using surface bonded slice lenses. Journal of Applied Physics, 2017, 122, .	2.5	20
42	Acoustofluidic black holes for multifunctional in-droplet particle manipulation. Science Advances, 2022, 8, eabm2592.	10.3	17
43	Acoustofluidic Scanning Nanoscope with High Resolution and Large Field of View. ACS Nano, 2020, 14, 8624-8633.	14.6	16
44	Dispersion curve regression – assisted wideband local wavenumber analysis for characterizing three-dimensional (3D) profile of hidden corrosion damage. Mechanical Systems and Signal Processing, 2021, 150, 107347.	8.0	14
45	Guided wave propagation study on laminated composites by frequency-wavenumber technique. , 2014, ,		11
46	Crack Detection and Evaluation in Grout Structures with Passive/Active Methods. Journal of Materials in Civil Engineering, 2016, 28, 04015168.	2.9	9
47	Crack detection with Lamb wave wavenumber analysis. , 2013, , .		8
48	Lamb Wave Propagation Study Using Frequency-Wavenumber Analysis., 2012,,.		7
49	Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis. , 2014, , .		6
50	Multi-site delamination detection and quantification in composites through guided wave based global-local sensing. AIP Conference Proceedings, 2017, , .	0.4	6
51	Lamb wave structural health monitoring using frequency-wavenumber analysis. AIP Conference Proceedings, 2013, , .	0.4	5
52	Water Level Sensing in a Steel Vessel Using AO and Quasi-Scholte Waves. Journal of Sensors, 2017, 2017, 1-11.	1.1	5
53	Electrically Tunable Surface Acoustic Wave Propagation at MHz Frequencies Based on Carbon Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2021, 31, 2010744.	14.9	5
54	Ultrasonic gas accumulation detection and evaluation in nuclear cooling pipes. , 2012, , .		4

#	Article	IF	CITATIONS
55	Study on guided wave propagation in a water loaded plate with wavenumber analysis techniques. , $2014, \ldots$		4
56	Guided wave damage detection with PZT-FBG sensing. , 2016, , .		3
57	Noncontact laser vibrometry-based fence-like arrays with wavefield filtering-assisted adaptive imaging algorithms for detecting multiple pits in a compact cluster. Structural Health Monitoring, 2020, , 147592172097692.	7.5	3
58	Gas Accumulation Detection in a Water Tank Using Lamb Waves. , 2012, , .		2
59	Single mode Lamb wave phased array beamforming with hybrid PZT-SLDV sensing. , 2014, , .		2
60	Wavenumber study of guided waves in aluminum honeycomb sandwich structures. Proceedings of SPIE, $2015, , .$	0.8	2
61	Phased array beamforming and imaging in composite laminates using guided waves. , 2016, , .		2
62	A dual mode imaging array for damage detection in grout structures. , 2013, , .		1
63	Study of Guided Wave Propagation in Honeycomb Sandwich Structures. , 2014, , .		1
64	Damage Assessment in Metal Plates by Using Laser Vibrometer Measurements. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 67-72.	0.5	1
65	Dual Mode Sensing of Crack Growth in Steel Bridge Structures. , 2012, , .		1
66	Guided Wave Sensing with Fiber Bragg Grating Optic Sensors and Embedment., 0, , .		1
67	Simulation Study of Damage Identification Method Based on Lamb Wave Scattering in Aluminium Plate. Advanced Materials Research, 0, 383-390, 7362-7368.	0.3	0
68	Simulation Study of Damage Identification Method Based on Lamb Wave Scattering in Aluminium Plate. Advanced Materials Research, 0, 433-440, 2611-2618.	0.3	0
69	3D guided wave motion analysis on laminated composites. , 2014, , .		0
70	Damage Imaging and Quantification Using Spectral Field. , 2015, , .		0
71	Impact induced delamination detection and quantification with guided wavefield analysis. Proceedings of SPIE, 2015, , .	0.8	0
72	Damage Detection With Guided Waves and Fiber Bragg Grating Sensor Arrays. , 2016, , .		O

#	Article	IF	CITATIONS
73	Damage Detection in Thick Steel Plates Using Guided Ultrasonic Waves and Non-Contact Laser Vibrometry. , $2016, \ldots$		О
74	Damage Detection in Composite Structures With Wavenumber Array Data Processing. , 2013, , .		O