Kelly R Redeker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306891/publications.pdf Version: 2024-02-01

KELLY P PEDEKED

#	Article	IF	CITATIONS
1	Volatile compounds in human breath: critical review and meta-analysis. Journal of Breath Research, 2022, 16, 024001.	3.0	37
2	Nondestructive Chemical Sensing within Bulk Soil Using 1000 Biosensors Per Gram of Matrix. ACS Synthetic Biology, 2022, 11, 2372-2383.	3.8	7
3	Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites, 2022, 12, 599.	2.9	3
4	Associational resistance through intercropping reduces yield losses to soilâ€borne pests and diseases. New Phytologist, 2022, 235, 2393-2405.	7.3	13
5	Marked Seasonal Changes in the Microbial Production, Community Composition, and Biogeochemistry of Glacial Snowpack Ecosystems in the Maritime Antarctic. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005706.	3.0	3
6	Biogeochemical Processes in the Active Layer and Permafrost of a High Arctic Fjord Valley. Frontiers in Earth Science, 2020, 8, .	1.8	8
7	Sub-permafrost methane seepage from open-system pingos in Svalbard. Cryosphere, 2020, 14, 3829-3842.	3.9	18
8	Creek Dynamics Determine Pond Subsurface Geochemical Heterogeneity in East Anglian (UK) Salt Marshes. Frontiers in Earth Science, 2019, 7, .	1.8	14
9	The Sedimentary Carbon-Sulfur-Iron Interplay – A Lesson From East Anglian Salt Marsh Sediments. Frontiers in Earth Science, 2019, 7, .	1.8	31
10	The Production and Fate of Volatile Organosulfur Compounds in Sulfidic and Ferruginous Sediment. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3390-3402.	3.0	14
11	Seasonal Dynamics of Methane and Carbon Dioxide Evasion From an Open System Pingo: Lagoon Pingo, Svalbard. Frontiers in Earth Science, 2019, 7, .	1.8	19
12	Catalytic Activation of Unstrained, Nonactivated Ketones Mediated by Platinum(II): Multiple C–C Bond Cleavage and CO Extrusion. Organometallics, 2019, 38, 4539-4542.	2.3	3
13	Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC-Antimicrobial Resistance, 2019, 1, dlz015.	2.1	10
14	Constant Isothiocyanate-Release Potentials across Biofumigant Seeding Rates. Journal of Agricultural and Food Chemistry, 2018, 66, 5108-5116.	5.2	14
15	A practical introduction to microbial molecular ecology through the use of isolation chips. Ecology and Evolution, 2018, 8, 12286-12298.	1.9	5
16	Noninvasive Analysis of the Soil Microbiome: Biomonitoring Strategies Using the Volatilome, Community Analysis, and Environmental Data. Advances in Ecological Research, 2018, 59, 93-132.	2.7	17
17	Development of an efficient glucosinolate extraction method. Plant Methods, 2017, 13, 17.	4.3	76
18	Microbial metabolism directly affects trace gases in (sub) polar snowpacks. Journal of the Royal Society Interface, 2017, 14, 20170729.	3.4	8

Kelly R Redeker

#	Article	IF	CITATIONS
19	Quantifying wind and pressure effects on trace gas fluxes across the soil–atmosphere interface. Biogeosciences, 2015, 12, 7423-7434.	3.3	23
20	SSuMMo: rapid analysis, comparison and visualization of microbial communities. Bioinformatics, 2012, 28, 679-686.	4.1	5
21	Methyl chloride isotopic signatures from <scp>I</scp> rish forest soils and a comparison between abiotic and biogenic methyl halide soil fluxes. Global Change Biology, 2012, 18, 1453-1467.	9.5	19
22	Mechanisms of Chloroform-Induced Hepatotoxicity: Oxidative Stress and Mitochondrial Permeability Transition in Freshly Isolated Mouse Hepatocytes. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 1936-1945.	2.3	21
23	Isotope values of atmospheric halocarbons and hydrocarbons from Irish urban, rural, and marine locations. Journal of Geophysical Research, 2007, 112, .	3.3	38
24	A method for carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv concentrations. Rapid Communications in Mass Spectrometry, 2005, 19, 337-342.	1.5	27
25	Reevaluation of global emissions from rice paddies of methyl iodide and other species. Geophysical Research Letters, 2005, 32, .	4.0	20
26	Ectomycorrhizal fungi: A new source of atmospheric methyl halides?. Global Change Biology, 2004, 10, 1009-1016.	9.5	45
27	Physiological and biochemical controls over methyl halide emissions from rice plants. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	13
28	Environmental controls over methyl halide emissions from rice paddies. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	19
29	Seasonal mass balance of halogens in simulated rice paddies. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	2
30	Gaseous emissions from flooded rice paddy agriculture. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	27
31	Interfield and intrafield variability of methyl halide emissions from rice paddies. Global Biogeochemical Cycles, 2002, 16, 72-1-72-9.	4.9	20
32	Emissions of Methyl Halides and Methane from Rice Paddies. Science, 2000, 290, 966-969.	12.6	195
33	Case Report: The effect of intravenous and oral antibiotics on the gut microbiome and breath volatile organic compounds over one year. Wellcome Open Research, 0, 7, 50.	1.8	1
34	Case Report: The effect of intravenous and oral antibiotics on the gut microbiome and breath volatile organic compounds over one year. Wellcome Open Research, 0, 7, 50.	1.8	1