
Michela Marinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Love it or Leave it: Differential Modulation of Incentive Motivation by Corticotropin-Releasing Factor Neurons. Biological Psychiatry, 2021, 89, 1113-1115.	0.7	0
2	The Lateral Preoptic Area and Its Projection to the VTA Regulate VTA Activity and Drive Complex Reward Behaviors. Frontiers in Systems Neuroscience, 2020, 14, 581830.	1.2	6
3	The Lateral Preoptic Area: A Novel Regulator of Reward Seeking and Neuronal Activity in the Ventral Tegmental Area. Frontiers in Neuroscience, 2019, 13, 1433.	1.4	18
4	Reduced sensitivity to reinforcement in adolescent compared to adult Sprague-Dawley rats of both sexes. Psychopharmacology, 2018, 235, 861-871.	1.5	16
5	Adolescent-onset of cocaine use is associated with heightened stress-induced reinstatement of cocaine seeking. Addiction Biology, 2016, 21, 634-645.	1.4	20
6	Heterogeneity of dopamine neuron activity across traits and states. Neuroscience, 2014, 282, 176-197.	1.1	122
7	Adolescents Are More Vulnerable to Cocaine Addiction: Behavioral and Electrophysiological Evidence. Journal of Neuroscience, 2013, 33, 4913-4922.	1.7	72
8	Kalirin-7 Mediates Cocaine-Induced AMPA Receptor and Spine Plasticity, Enabling Incentive Sensitization. Journal of Neuroscience, 2013, 33, 11012-11022.	1.7	44
9	Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults. Journal of Neurophysiology, 2012, 108, 1620-1630.	0.9	93
10	Group I mGluR Activation Reverses Cocaine-Induced Accumulation of Calcium-Permeable AMPA Receptors in Nucleus Accumbens Synapses via a Protein Kinase C-Dependent Mechanism. Journal of Neuroscience, 2011, 31, 14536-14541.	1.7	112
11	Calcium-Permeable AMPA Receptors Are Present in Nucleus Accumbens Synapses after Prolonged Withdrawal from Cocaine Self-Administration But Not Experimenter-Administered Cocaine. Journal of Neuroscience, 2011, 31, 5737-5743.	1.7	155
12	Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)â€induced gene regulation in the adolescent striatum. European Journal of Neuroscience, 2010, 32, 435-447.	1.2	30
13	Fos After Single and Repeated Self-Administration of Cocaine and Saline in the Rat: Emphasis on the Basal Forebrain and Recalibration of Expression. Neuropsychopharmacology, 2010, 35, 445-463.	2.8	70
14	Fluoxetine Potentiates Methylphenidate-Induced Gene Regulation in Addiction-Related Brain Regions: Concerns for Use of Cognitive Enhancers?. Biological Psychiatry, 2010, 67, 592-594.	0.7	26
15	Persistent Increases in Cocaine-Seeking Behavior After Acute Exposure to Cold Swim Stress. Biological Psychiatry, 2010, 68, 303-305.	0.7	38
16	Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience, 2010, 169, 182-194.	1.1	69
17	The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 2009, 513, 566-596.	0.9	391
18	Stress and addiction: glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nature Neuroscience, 2009, 12, 247-249.	7.1	156

MICHELA MARINELLI

#	Article	IF	CITATIONS
19	Age matters. European Journal of Neuroscience, 2009, 29, 997-1014.	1.2	246
20	Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol, 2009, 43, 531-539.	0.8	56
21	Individual Differences in Dopamine Cell Neuroadaptations Following Cocaine Self-Administration. Biological Psychiatry, 2009, 66, 801-803.	0.7	27
22	Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature, 2008, 454, 118-121.	13.7	995
23	Prominent Activation of Brainstem and Pallidal Afferents of the Ventral Tegmental Area by Cocaine. Neuropsychopharmacology, 2008, 33, 2688-2700.	2.8	76
24	Dopaminergic Reward Pathways and Effects of Stress. , 2007, , 41-83.		16
25	Dopamine Scales Performance in the Absence of New Learning. Neuron, 2006, 51, 541-547.	3.8	131
26	Leptin Receptor Signaling in Midbrain Dopamine Neurons Regulates Feeding. Neuron, 2006, 51, 801-810.	3.8	1,051
27	Excitability of Dopamine Neurons: Modulation and Physiological Consequences. CNS and Neurological Disorders - Drug Targets, 2006, 5, 79-97.	0.8	122
28	Glucocorticoid hormones, individual differences, and behavioral and dopaminergic responses to psychostimulant drugs. Handbook of Behavioral Neuroscience, 2005, , 89-111.	0.0	1
29	The many facets of the locomotor response to a novel environment test: Theoretical comment on Mitchell, Cunningham, and Mark (2005) Behavioral Neuroscience, 2005, 119, 1144-1151.	0.6	27
30	Decreased firing frequency of midbrain dopamine neurons in mice lacking mu opioid receptors. European Journal of Neuroscience, 2005, 21, 2883-2886.	1.2	16
31	The role of corticosterone in food deprivation-induced reinstatement of cocaine seeking in the rat. Psychopharmacology, 2003, 168, 170-176.	1.5	116
32	Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology, 2003, 168, 84-98.	1.5	98
33	Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biological Psychiatry, 2003, 54, 1338-1344.	0.7	123
34	Amphetamine and cocaine do not increase Narp expression in rat ventral tegmental area, nucleus accumbens or prefrontal cortex, but Narp may contribute to individual differences in responding to a novel environment. European Journal of Neuroscience, 2002, 15, 2027-2036.	1.2	15
35	The neurosteroid allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens. European Journal of Neuroscience, 2002, 16, 169-173.	1.2	87
36	Interaction between glucocorticoid hormones, stress and psychostimulant drugs*. European Journal of Neuroscience, 2002, 16, 387-394.	1.2	368

MICHELA MARINELLI

#	Article	IF	CITATIONS
37	Influence of glucocorticoids on dopaminergic transmission in the rat dorsolateral striatum. European Journal of Neuroscience, 2001, 13, 812-818.	1.2	49
38	Enhanced Reactivity and Vulnerability to Cocaine Following Methylphenidate Treatment in Adolescent Rats. Neuropsychopharmacology, 2001, 25, 651-661.	2.8	217
39	The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. European Journal of Neuroscience, 2000, 12, 973-979.	1.2	190
40	Enhanced Vulnerability to Cocaine Self-Administration Is Associated with Elevated Impulse Activity of Midbrain Dopamine Neurons. Journal of Neuroscience, 2000, 20, 8876-8885.	1.7	256
41	Functional heterogeneity in dopamine release and in the expression of Fos-like proteins within the rat striatal complex. European Journal of Neuroscience, 1999, 11, 1155-1166.	1.2	72
42	Adrenalectomy increases neurogenesis but not PSA-NCAM expression in aged dentate gyrus. European Journal of Neuroscience, 1999, 11, 1479-1485.	1.2	119
43	Sensitization to the motor effects of contingent infusions of heroin but not of κ agonist RU 51599. Psychopharmacology, 1998, 139, 281-285.	1.5	20
44	Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. European Journal of Neuroscience, 1998, 10, 2994-3006.	1.2	88
45	Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential. European Journal of Neuroscience, 1998, 10, 3269-3275.	1.2	35
46	Dopamine-dependent responses to morphine depend on glucocorticoid receptors. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7742-7747.	3.3	118
47	Acute Blockade of Corticosterone Secretion Decreases the Psychomotor Stimulant Effects of Cocaine. Neuropsychopharmacology, 1997, 16, 156-161.	2.8	57
48	Glucocorticoids and behavioral effects of psychostimulants. I: locomotor response to cocaine depends on basal levels of glucocorticoids. Journal of Pharmacology and Experimental Therapeutics, 1997, 281, 1392-400.	1.3	61
49	Glucocorticoids and behavioral effects of psychostimulants. II: cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. Journal of Pharmacology and Experimental Therapeutics, 1997, 281, 1401-7.	1.3	129
50	Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15445-15450.	3.3	117
51	Acute pharmacological blockade of corticosterone secretion reverses food restriction-induced sensitization of the locomotor response to cocaine. Brain Research, 1996, 724, 251-255.	1.1	60
52	Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion. Journal of Neuroscience, 1995, 15, 7189-7195.	1.7	183
53	Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. Journal of Neuroscience, 1995, 15, 7181-7188.	1.7	235
54	Corticosterone circadian secretion differentially facilitates dopamine- mediated psychomotor effect of cocaine and morphine. Journal of Neuroscience, 1994, 14, 2724-2731.	1.7	121

#	Article	IF	CITATIONS
55	Animals predisposed to develop amphetamine self-administration show higher susceptibility to develop contextual conditioning of both amphetamine-induced hyperlocomotion and sensitization. Brain Research, 1994, 657, 236-244.	1.1	83
56	Inhibition of corticosterone synthesis by Metyrapone decreases cocaine-induced locomotion and relapse of cocaine self-administration. Brain Research, 1994, 658, 259-264.	1.1	136
57	Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Research, 1993, 624, 209-215.	1.1	129
58	Influence of Environmental and Hormonal Factors in Sensitivity to Psychostimulants. , 0, , 133-159.		0