
Anne Bernhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306871/publications.pdf Version: 2024-02-01

ANNE REDNHADDT

#	Article	IF	CITATIONS
1	Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2014, 10, 883-892.	8.3	147
2	Biomimetically Mineralized Salmon Collagen Scaffolds for Application in Bone Tissue Engineering. Biomacromolecules, 2012, 13, 1059-1066.	5.4	134
3	Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature. PLoS ONE, 2015, 10, e0129205.	2.5	100
4	Novel Textile Chitosan Scaffolds Promote Spreading, Proliferation, and Differentiation of Osteoblasts. Biomacromolecules, 2008, 9, 2913-2920.	5.4	94
5	3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Scientific Reports, 2020, 10, 8277.	3.3	86
6	Mineralised collagen—an artificial, extracellular bone matrix—improves osteogenic differentiation of bone marrow stromal cells. Journal of Materials Science: Materials in Medicine, 2008, 19, 269-275.	3.6	85
7	Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 54-62.	2.7	72
8	A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs. ACS Applied Materials & Interfaces, 2020, 12, 12557-12572.	8.0	72
9	Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 400-407.	2.7	70
10	Crosstalk of osteoblast and osteoclast precursors on mineralized collagen—towards an <i>in vitro</i> model for bone remodeling. Journal of Biomedical Materials Research - Part A, 2010, 95A, 848-856.	4.0	54
11	Scaffolds for Hard Tissue Engineering by Ionotropic Gelation of Alginate?Influence of Selected Preparation Parameters. Journal of the American Ceramic Society, 2007, 90, 1703-1708.	3.8	51
12	In Vitro Evaluation of Textile Chitosan Scaffolds for Tissue Engineering using Human Bone Marrow Stromal Cells. Biomacromolecules, 2009, 10, 1305-1310.	5.4	50
13	Heparin modification of calcium phosphate bone cements for VEGF functionalization. Journal of Biomedical Materials Research - Part A, 2008, 86A, 749-759.	4.0	47
14	In Vitro Co-culture Model of Primary Human Osteoblasts and Osteocytes in Collagen Gels. International Journal of Molecular Sciences, 2019, 20, 1998.	4.1	43
15	Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Materials Science and Engineering C, 2017, 73, 99-110.	7.3	41
16	Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects. Marine Drugs, 2018, 16, 91.	4.6	40
17	Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts. Journal of Materials Science: Materials in Medicine, 2013, 24, 1755-1766.	3.6	34
18	Formation of Osteoclasts on Calcium Phosphate Bone Cements and Polystyrene Depends on Monocyte Isolation Conditions. Tissue Engineering - Part C: Methods, 2015, 21, 160-170.	2.1	34

Anne Bernhardt

#	Article	IF	CITATIONS
19	Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapy. Materials Science and Engineering C, 2018, 84, 159-167.	7.3	33
20	Novel ceramic bone replacement material Osbone® in a comparative in vitro study with osteoblasts. Clinical Oral Implants Research, 2011, 22, 651-657.	4.5	30
21	A bioactive triphasic ceramicâ€coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research - Part A, 2009, 90A, 533-542.	4.0	28
22	Primary Human Osteocyte Networks in Pure and Modified Collagen Gels. Tissue Engineering - Part A, 2019, 25, 1347-1355.	3.1	28
23	Tailorable Zinc-Substituted Mesoporous Bioactive Glass/Alginate-Methylcellulose Composite Bioinks. Materials, 2021, 14, 1225.	2.9	28
24	Surface conditioning of additively manufactured titanium implants and its influence on materials properties and in vitro biocompatibility. Materials Science and Engineering C, 2021, 119, 111631.	7.3	27
25	Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2002089.	7.6	26
26	Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements. PLoS ONE, 2017, 12, e0182109.	2.5	26
27	Comparative evaluation of different calcium phosphateâ€based bone graft granules – an <i>in vitro</i> study with osteoblastâ€like cells. Clinical Oral Implants Research, 2013, 24, 441-449.	4.5	24
28	Bioreactors in tissue engineering: Advances in stem cell culture and threeâ€dimensional tissue constructs. Engineering in Life Sciences, 2015, 15, 670-677.	3.6	24
29	Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Acta Biomaterialia, 2016, 44, 267-276.	8.3	24
30	Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 444-453.	2.7	23
31	Modifications of a calcium phosphate cement with biomolecules—Influence on nanostructure, material, and biological properties. Journal of Biomedical Materials Research - Part A, 2010, 95A, 912-923.	4.0	21
32	Core–shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes. Biofabrication, 2022, 14, 014108.	7.1	21
33	Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. International Journal of Molecular Sciences, 2021, 22, 7316.	4.1	20
34	Influence of Cu2+ on Osteoclast Formation and Activity In Vitro. International Journal of Molecular Sciences, 2021, 22, 2451.	4.1	19
35	An improved method to isolate primary human osteocytes from bone. Biomedizinische Technik, 2020, 65, 107-111.	0.8	18
36	Three-Dimensional Co-culture of Primary Human Osteocytes and Mature Human Osteoclasts in Collagen Gels. Tissue Engineering - Part A, 2020, 26, 647-655.	3.1	18

#	Article	IF	CITATIONS
37	Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1452-1460.	4.0	15
38	Biodegradation and Cytocompatibility Studies of a Triphasic Ceramicâ€Coated Porous Hydroxyapatite for Bone Substitute Applications. International Journal of Applied Ceramic Technology, 2008, 5, 11-19.	2.1	12
39	Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation. International Journal of Molecular Sciences, 2021, 22, 9341.	4.1	12
40	The interplay of collagen/bioactive glass nanoparticle coatings and electrical stimulation regimes distinctly enhanced osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2022, 149, 373-386.	8.3	9
41	Artificial Extracellular Matrices Containing Bioactive Class Nanoparticles Promote Osteogenic Differentiation in Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 12819.	4.1	8
42	Impact of degradable magnesium implants on osteocytes in single and triple cultures. Materials Science and Engineering C, 2022, 134, 112692.	7.3	7
43	Development of a mechanically stable support for the osteoinductive biomaterial COLLOSS [®] E. Journal of Tissue Engineering and Regenerative Medicine, 2009, 3, 149-152.	2.7	6
44	Impact of Sr2+ and hypoxia on 3D triple cultures of primary human osteoblasts, osteocytes and osteoclasts. European Journal of Cell Biology, 2022, 101, 151256.	3.6	5
45	Stem Cell Engineering for Regeneration of Bone Tissue. , 2011, , 383-399.		3
46	Composite Bioinks With Mesoporous Bioactive Glasses—A Critical Evaluation of Results Obtained by In Vitro Experiments. Frontiers in Bioengineering and Biotechnology, 2021, 9, 767256.	4.1	3
47	Biomaterials based on mineralised collagen—an artificial extracellular bone matrix. , 2007, , 323-328.		2