List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306851/publications.pdf Version: 2024-02-01

128	16,114	19657 61	19749 117
papers	citations	h-index	g-index
141 all docs	141 docs citations	141 times ranked	17278 citing authors

#	Article	IF	CITATIONS
1	EMAN2: An extensible image processing suite for electron microscopy. Journal of Structural Biology, 2007, 157, 38-46.	2.8	2,798
2	EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions. Journal of Structural Biology, 1999, 128, 82-97.	2.8	2,320
3	Integrative structure and functional anatomy of a nuclear pore complex. Nature, 2018, 555, 475-482.	27.8	435
4	SPARX, a new environment for Cryo-EM image processing. Journal of Structural Biology, 2007, 157, 47-55.	2.8	356
5	Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications, 2005, , 3915.	4.1	310
6	Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nature Methods, 2017, 14, 983-985.	19.0	298
7	Bridging the information gap: computational tools for intermediate resolution structure interpretation. Journal of Molecular Biology, 2001, 308, 1033-1044.	4.2	282
8	The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure, 2012, 20, 814-825.	3.3	261
9	EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Research, 2011, 39, D456-D464.	14.5	246
10	Improvement of cryo-EM maps by density modification. Nature Methods, 2020, 17, 923-927.	19.0	243
11	Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nature Structural and Molecular Biology, 2006, 13, 209-217.	8.2	235
12	EMDataBank unified data resource for 3DEM. Nucleic Acids Research, 2016, 44, D396-D403.	14.5	230
13	Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophysical Journal, 1996, 70, 2659-2666.	0.5	226
14	Mechanism of alamethicin insertion into lipid bilayers. Biophysical Journal, 1996, 71, 2669-2679.	0.5	213
15	Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature, 2015, 527, 336-341.	27.8	199
16	Mechanism of folding chamber closure in a group II chaperonin. Nature, 2010, 463, 379-383.	27.8	196
17	Mitochondrial ATP Synthasome. Journal of Biological Chemistry, 2004, 279, 31761-31768.	3.4	193
18	X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophysical Journal, 1995, 68, 2361-2369.	0.5	192

#	Article	IF	CITATIONS
19	Seeing GroEL at 6 Ã Resolution by Single Particle Electron Cryomicroscopy. Structure, 2004, 12, 1129-1136.	3.3	187
20	A complete data processing workflow for cryo-ET and subtomogram averaging. Nature Methods, 2019, 16, 1161-1168.	19.0	174
21	De Novo Backbone Trace of GroEL from Single Particle Electron Cryomicroscopy. Structure, 2008, 16, 441-448.	3.3	164
22	High resolution single particle refinement in EMAN2.1. Methods, 2016, 100, 25-34.	3.8	163
23	4.0-â,,« resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4967-4972.	7.1	152
24	Interprotofilament interactions between Alzheimer's Aβ _{1–42} peptides in amyloid fibrils revealed by cryoEM. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4653-4658.	7.1	147
25	A Structure of the Human Apoptosome at 12.8 Ã Resolution Provides Insights into This Cell Death Platform. Structure, 2005, 13, 1725-1735.	3.3	145
26	Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 181-184.	2.6	144
27	The Pore Structure of the Closed RyR1 Channel. Structure, 2005, 13, 1203-1211.	3.3	142
28	Structure of the SecY channel during initiation of protein translocation. Nature, 2014, 506, 102-106.	27.8	138
29	Structure of a Biologically Active Estrogen Receptor-Coactivator Complex on DNA. Molecular Cell, 2015, 57, 1047-1058.	9.7	137
30	Automatic particle selection: results of a comparative study. Journal of Structural Biology, 2004, 145, 3-14.	2.8	129
31	Architecture of the Ribosome–Channel Complex Derived from Native Membranes. Journal of Molecular Biology, 2005, 348, 445-457.	4.2	126
32	Visualizing virus assembly intermediates inside marine cyanobacteria. Nature, 2013, 502, 707-710.	27.8	123
33	Structural diversity of supercoiled DNA. Nature Communications, 2015, 6, 8440.	12.8	122
34	A 11.5 Ã single particle reconstruction of GroEL using EMAN. Journal of Molecular Biology, 2001, 314, 253-262.	4.2	119
35	Structure of an Apoptosome-Procaspase-9 CARD Complex. Structure, 2010, 18, 571-583.	3.3	118
36	Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9610-9615.	7.1	106

#	Article	IF	CITATIONS
37	Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophysical Journal, 1997, 73, 239-244.	0.5	105
38	An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nature Communications, 2014, 5, 4808.	12.8	105
39	Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nature Methods, 2021, 18, 930-936.	19.0	102
40	Single particle tomography in EMAN2. Journal of Structural Biology, 2015, 190, 279-290.	2.8	98
41	Fourier Amplitude Decay of Electron Cryomicroscopic Images of Single Particles and Effects on Structure Determination. Journal of Structural Biology, 2001, 133, 32-42.	2.8	95
42	In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nature Communications, 2019, 10, 2635.	12.8	95
43	Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Molecular Cell, 2020, 79, 812-823.e4.	9.7	94
44	Ribosome Binding of a Single Copy of the SecY Complex: Implications for Protein Translocation. Molecular Cell, 2007, 28, 1083-1092.	9.7	92
45	Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nature Structural and Molecular Biology, 2008, 15, 746-753.	8.2	91
46	Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell, 2022, 185, 361-378.e25.	28.9	87
47	Structure of the Type 1 Inositol 1,4,5-Trisphosphate Receptor Revealed by Electron Cryomicroscopy. Journal of Biological Chemistry, 2003, 278, 21319-21322.	3.4	85
48	Single-Particle Refinement and Variability Analysis in EMAN2.1. Methods in Enzymology, 2016, 579, 159-189.	1.0	85
49	The Holo-Apoptosome: Activation of Procaspase-9 and Interactions with Caspase-3. Structure, 2011, 19, 1084-1096.	3.3	83
50	Structural Analysis of the Anaphase-Promoting Complex Reveals Multiple Active Sites and Insights into Polyubiquitylation. Molecular Cell, 2005, 20, 855-866.	9.7	81
51	Flexible Architecture of IP3R1 by Cryo-EM. Structure, 2011, 19, 1192-1199.	3.3	80
52	Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. EMBO Journal, 2012, 31, 720-730.	7.8	80
53	Cryo-EM of macromolecular assemblies at near-atomic resolution. Nature Protocols, 2010, 5, 1697-1708.	12.0	79
54	Experimental Verification of Conformational Variation of Human Fatty Acid Synthase as Predicted by Normal Mode Analysis. Structure, 2004, 12, 185-191.	3.3	78

STEVEN J LUDTKE

#	Article	IF	CITATIONS
55	Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10370-10375.	7.1	76
56	Structure of Ca2+ Release Channel at 14Ã Resolution. Journal of Molecular Biology, 2005, 345, 427-431.	4.2	76
57	Structure of the Drosophila Apoptosome at 6.9ÂÃ Resolution. Structure, 2011, 19, 128-140.	3.3	73
58	TRiC's tricks inhibit huntingtin aggregation. ELife, 2013, 2, e00710.	6.0	73
59	Structural and Functional Impacts of ER Coactivator Sequential Recruitment. Molecular Cell, 2017, 67, 733-743.e4.	9.7	69
60	De Novo modeling in cryo-EM density maps with Pathwalking. Journal of Structural Biology, 2016, 196, 289-298.	2.8	68
61	Cryoelectron Microscopy Structures of Rotavirus NSP2-NSP5 and NSP2-RNA Complexes: Implications for Genome Replication. Journal of Virology, 2006, 80, 10829-10835.	3.4	66
62	Model of human low-density lipoprotein and bound receptor based on CryoEM. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1059-1064.	7.1	65
63	A 9Ã single particle reconstruction from CCD captured images on a 200kV electron cryomicroscope. Journal of Structural Biology, 2004, 147, 116-127.	2.8	64
64	Visualizing Individual RuBisCO and Its Assembly into Carboxysomes in Marine Cyanobacteria by Cryo-Electron Tomography. Journal of Molecular Biology, 2018, 430, 4156-4167.	4.2	63
65	Structural Mechanism of SDS-Induced Enzyme Activity of Scorpion Hemocyanin Revealed by Electron Cryomicroscopy. Structure, 2009, 17, 749-758.	3.3	61
66	The skeletal muscle Ca2+ release channel has an oxidoreductase-like domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12155-12160.	7.1	60
67	An Expanded Conformation of Single-Ring GroEL-GroES Complex Encapsulates an 86 kDa Substrate. Structure, 2006, 14, 1711-1722.	3.3	59
68	MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography. Journal of Structural Biology, 2015, 192, 146-150.	2.8	59
69	Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 138-143.	7.1	57
70	Human CCT4 and CCT5 Chaperonin Subunits Expressed in Escherichia coli Form Biologically Active Homo-oligomers. Journal of Biological Chemistry, 2013, 288, 17734-17744.	3.4	54
71	3-D Structures of Macromolecules Using Single-Particle Analysis in EMAN. Methods in Molecular Biology, 2010, 673, 157-173.	0.9	52
72	EMEN2: An Object Oriented Database and Electronic Lab Notebook. Microscopy and Microanalysis, 2013, 19. 1-10.	0.4	52

#	Article	IF	CITATIONS
73	Structure of the 30ÂkDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure, 2018, 26, 490-498.e3.	3.3	52
74	Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nature Structural and Molecular Biology, 2019, 26, 1094-1105.	8.2	52
75	Data management challenges in three-dimensional EM. Nature Structural and Molecular Biology, 2012, 19, 1203-1207.	8.2	49
76	Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Cell Research, 2018, 28, 1158-1170.	12.0	48
77	Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20242-20247.	7.1	45
78	Electron cryomicroscopy of single particles at subnanometer resolution. Current Opinion in Structural Biology, 2005, 15, 571-577.	5.7	43
79	Validation of Cryo-EM Structure of IP3R1 Channel. Structure, 2013, 21, 900-909.	3.3	43
80	Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. Journal of Structural Biology, 2016, 194, 383-394.	2.8	42
81	The advent of structural biology in situ by single particle cryo-electron tomography. Biophysics Reports, 2017, 3, 17-35.	0.8	41
82	New software tools in EMAN2 inspired by EMDatabank map challenge. Journal of Structural Biology, 2018, 204, 283-290.	2.8	40
83	Constructing and Validating Initial Cα Models from Subnanometer Resolution Density Maps with Pathwalking. Structure, 2012, 20, 450-463.	3.3	38
84	X-ray scattering with momentum transfer in the plane of membrane. Application to gramicidin organization. Biophysical Journal, 1993, 64, 157-162.	0.5	37
85	Closed state of gramicidin channel detected by X-ray in-plane scattering. Biophysical Chemistry, 1994, 49, 83-89.	2.8	34
86	CTF Challenge: Result summary. Journal of Structural Biology, 2015, 190, 348-359.	2.8	34
87	Cryo-EM Structure of a Molluscan Hemocyanin Suggests Its Allosteric Mechanism. Structure, 2013, 21, 604-613.	3.3	30
88	Domain organization of membraneâ€bound factor VIII. Biopolymers, 2013, 99, 448-459.	2.4	30
89	Discrete Structure of an RNA Folding Intermediate Revealed by Cryo-electron Microscopy. Journal of the American Chemical Society, 2010, 132, 16352-16353.	13.7	29
90	Single Particle Analysis at High Resolution. Methods in Enzymology, 2010, 482, 211-235.	1.0	29

STEVEN J LUDTKE

#	Article	IF	CITATIONS
91	Structural and functional analyses of photosystem II in the marine diatom <i>Phaeodactylum tricornutum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17316-17322.	7.1	29
92	In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure, 2022, 30, 107-113.e3.	3.3	28
93	Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. EMBO Journal, 2004, 23, 2963-2971.	7.8	26
94	Characterization of Antibiotic Peptide Pores Using Cryo-EM and Comparison to Neutron Scattering. Biophysical Journal, 2009, 97, 164-172.	0.5	26
95	Cryo-ET of <i>Toxoplasma</i> parasites gives subnanometer insight into tubulin-based structures. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
96	Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nature Protocols, 2014, 9, 2630-2642.	12.0	24
97	A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation. Structure, 2017, 25, 40-52.	3.3	23
98	Disruption of Human Plasma High-Density Lipoproteins by Streptococcal Serum Opacity Factor Requires Labile Apolipoprotein A-I. Biochemistry, 2009, 48, 1481-1487.	2.5	22
99	The 2010 cryoâ€em modeling challenge. Biopolymers, 2012, 97, 651-654.	2.4	22
100	Details of ssDNA annealing revealed by an HSV-1 ICP8–ssDNA binary complex. Nucleic Acids Research, 2013, 41, 5927-5937.	14.5	22
101	Single-particle Cryo-EM of calcium release channels: structural validation. Current Opinion in Structural Biology, 2013, 23, 755-762.	5.7	19
102	Object Oriented Database and Electronic Notebook for Transmission Electron Microscopy. Microscopy and Microanalysis, 2003, 9, 556-565.	0.4	16
103	Preliminary Structural Elucidation of \hat{l}^2 -(1,3)-glucan Synthase from Candida glabrata Using Cryo-Electron Tomography. Journal of Fungi (Basel, Switzerland), 2021, 7, 120.	3.5	16
104	Direct Measurement of the Structure of Reconstituted High-Density Lipoproteins by Cryo-EM. Biophysical Journal, 2016, 110, 810-816.	0.5	15
105	Focal pair merging for contrast enhancement of single particles. Journal of Structural Biology, 2003, 144, 73-78.	2.8	14
106	Singleâ€Particle Electron Cryomicroscopy of the Ion Channels in the Excitation–Contraction Coupling Junction. Methods in Cell Biology, 2007, 79, 407-435.	1.1	12
107	The Electron Microscopy eXchange (EMX) initiative. Journal of Structural Biology, 2016, 194, 156-163.	2.8	12
108	3D Structure of IP3 Receptor. Current Topics in Membranes, 2010, 66, 171-189.	0.9	7

7

#	Article	IF	CITATIONS
109	Computational Tools to Improve Visualization by Cryo-Electron Tomography. Biophysical Journal, 2016, 110, 159a.	0.5	2
110	A Complete Workflow for Cellular Tomography and Subtomogram Averaging in EMAN2. Microscopy and Microanalysis, 2018, 24, 866-867.	0.4	2
111	Using Cryo-ET to distinguish platelets during pre-acute myeloid leukemia from steady state hematopoiesis. Communications Biology, 2022, 5, 72.	4.4	2
112	Building and Validating Atomic Models for Cryo-EM Density Maps. Microscopy and Microanalysis, 2016, 22, 2080-2081.	0.4	1
113	New Strategies for Improving CryoEM Single Particle Analysis in EMAN2.2. Microscopy and Microanalysis, 2017, 23, 810-811.	0.4	1
114	In Situ Structure and Assembly of the Bacterial Multidrug Efflux Pump. Microscopy and Microanalysis, 2019, 25, 1304-1305.	0.4	1
115	Estimates of the Fourier Amplitude Decay of Electron Micrographs of Single Particles. Microscopy and Microanalysis, 2000, 6, 256-257.	0.4	0
116	Merging Focal Pairs for Improved Particle Selection and Orientation Determination. Microscopy and Microanalysis, 2002, 8, 216-217.	0.4	0
117	Imaging Ice Embedded Single Particles With A 16 Megapixel CCD Camera. Microscopy and Microanalysis, 2003, 9, 962-963.	0.4	0
118	GroEL Structure at 6 Ã Resolution Using Electron Cryomicroscopy and EMAN. Microscopy and Microanalysis, 2004, 10, 1494-1495.	0.4	0
119	Modeling Protein Structure in Macromolecular Assemblies at Near Atomic Resolutions. Microscopy and Microanalysis, 2015, 21, 541-542.	0.4	0
120	IP3R1 - Assessing Map Interpretability at Near Atomic Resolution. Microscopy and Microanalysis, 2015, 21, 543-544.	0.4	0
121	Going Deeper in Cryo Electron Tomography with Neural Networks. Microscopy and Microanalysis, 2017, 23, 814-815.	0.4	0
122	A Complete Workflow for Subnanometer Resolution Subtomogram Averaging In Situ. Microscopy and Microanalysis, 2020, 26, 1616-1616.	0.4	0
123	Explore the complexity of proteins with an expanded CryoET data processing pipeline. Microscopy and Microanalysis, 2021, 27, 2816-2817.	0.4	0
124	Conformational Changes of Eukaryotic Chaperonin TRiC/CCT in the Nucleotide Cycle Revealed by CryoEM. FASEB Journal, 2009, 23, 850.12.	0.5	0
125	Rocking Motion of the Equatorial Domains of a Group II Chaperonin between Two Biochemical States Revealed by Singleâ€Particle Cryoâ€EM at Nearâ€atomic and Subnanometer Resolutions. FASEB Journal, 2009, 23, 673.12.	0.5	0
126	4.0 à Resolution Cryoâ€EM Structure of the Mammalian Chaperonin TRiC/CCT Reveals its Unique Subunit Arrangement. FASEB Journal, 2010, 24, 684.5.	0.5	0

#	Article	IF	CITATIONS
127	In Situ Investigations of the Bacterial Type II Secretion System. Microscopy and Microanalysis, 2020, 26, 2734-2735.	0.4	0
128	Precision requirements and data compression in CryoEM/CryoET. Journal of Structural Biology, 2022, 214, 107875.	2.8	0