Shaofang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306785/publications.pdf Version: 2024-02-01

SHAOFANC LL

#	Article	IF	CITATIONS
1	A Histone Acetyltransferase Regulates Active DNA Demethylation in <i>Arabidopsis</i> . Science, 2012, 336, 1445-1448.	6.0	224
2	Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms. Molecular Plant, 2020, 13, 565-572.	3.9	159
3	Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in <i>Arabidopsis</i> reveals features and regulation of siRNA biogenesis. Genome Research, 2015, 25, 235-245.	2.4	143
4	Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Molecular Plant, 2019, 12, 1015-1026.	3.9	109
5	Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. ELife, 2016, 5, .	2.8	104
6	Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Molecular Biology and Evolution, 2015, 32, 1788-1799.	3.5	77
7	NAD ⁺ -capped RNAs are widespread in the <i>Arabidopsis</i> transcriptome and can probably be translated. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12094-12102.	3.3	77
8	The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module. Current Biology, 2017, 27, 1597-1609.e2.	1.8	69
9	High-efficiency and multiplex adenine base editing in plants using new TadA variants. Molecular Plant, 2021, 14, 722-731.	3.9	69
10	Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of <i>OsTubA2</i> . Plant Biotechnology Journal, 2021, 19, 5-7.	4.1	52
11	The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. Plant Cell, 2019, 31, 486-501.	3.1	51
12	SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic Acids Research, 2016, 44, 608-620.	6.5	41
13	Global Co-transcriptional Splicing in Arabidopsis and the Correlation with Splicing Regulation in Mature RNAs. Molecular Plant, 2020, 13, 266-277.	3.9	36
14	Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10576-10585.	3.3	32
15	The Arabidopsis Nodulin Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. Plant Cell, 2020, 32, 703-721.	3.1	29
16	Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nature Communications, 2022, 13, 1217.	5.8	19
17	Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants. Journal of Genetics and Genomics, 2015, 42, 319-330.	1.7	18
18	The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. ELife, 2017, 6, .	2.8	18

Shaofang Li

#	Article	IF	CITATIONS
19	A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biology, 2022, 23, 51.	3.8	12
20	Geminiviruses boost active DNA demethylation for counter-defense. Trends in Microbiology, 2022, 30, 1121-1124.	3.5	9
21	T-LOC: A comprehensive tool to localize and characterize T-DNA integration sites. Plant Physiology, 2022, 190, 1628-1639.	2.3	3