Karin Stiasny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tick-Borne Encephalitis in Vaccinated Patients: A Retrospective Case-Control Study and Analysis of Vaccination Field Effectiveness in Austria From 2000 to 2018. Journal of Infectious Diseases, 2023, 227, 512-521.	4.0	10
2	Impact of structural dynamics on biological functions of flaviviruses. FEBS Journal, 2023, 290, 1973-1985.	4.7	5
3	Neutralization of SARSâ€CoVâ€2 requires antibodies against conformational receptorâ€binding domain epitopes. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 230-242.	5.7	45
4	Additional heterologous versus homologous booster vaccination in immunosuppressed patients without SARS-CoV-2 antibody seroconversion after primary mRNA vaccination: a randomised controlled trial. Annals of the Rheumatic Diseases, 2022, 81, 687-694.	0.9	43
5	Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine, 2022, 76, 103852.	6.1	17
6	Symptoms and risk factors for hospitalization of COVID-19 presented in primary care. Wiener Klinische Wochenschrift, 2022, 134, 335-343.	1.9	4
7	Characterization of the antibody response to SARS oVâ€2 in a mildly affected pediatric population. Pediatric Allergy and Immunology, 2022, 33, e13737.	2.6	5
8	Long-Lived Immunity in SARS-CoV-2-Recovered Children and Its Neutralizing Capacity Against Omicron. Frontiers in Immunology, 2022, 13, .	4.8	15
9	The First Case of Usutu Virus Neuroinvasive Disease in Austria, 2021. Open Forum Infectious Diseases, 2022, 9, .	0.9	4
10	Chapter 2b: The molecular antigenic structure of the TBEV. Tick-borne Encephalitis - the Book, 2022, , .	0.1	0
11	TBE in Austria. Tick-borne Encephalitis - the Book, 2022, , .	0.1	0
12	Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery. Nature Communications, 2022, 13, .	12.8	17
13	Role of ducks in the transmission cycle of tickâ€borne encephalitis virus?. Transboundary and Emerging Diseases, 2021, 68, 499-508.	3.0	2
14	High-throughput sequencing of two European strains of tick-borne encephalitis virus (TBEV), Hochosterwitz and 1993/783. Ticks and Tick-borne Diseases, 2021, 12, 101557.	2.7	9
15	Diagnosis of COVID-19 using multiple antibody assays in two cases with negative PCR results from nasopharyngeal swabs. Infection, 2021, 49, 171-175.	4.7	11
16	Low prevalence of tick-borne encephalitis virus antibodies in Norwegian blood donors. Infectious Diseases, 2021, 53, 44-51.	2.8	12
17	Kinetics of SARS-CoV-2 specific antibodies (IgM, IgA, IgG) in non-hospitalized patients four months following infection. Journal of Infection, 2021, 82, 282-327.	3.3	19
18	SARS-CoV-2 positive virus culture 7 weeks after onset of COVID-19 in an immunocompromised patient suffering from X chromosome-linked agammaglobulinemia. Journal of Infection. 2021. 82. 414-451.	3.3	17

#	Article	IF	CITATIONS
19	Lessons from low seroprevalence of SARSâ€CoVâ€2 antibodies in schoolchildren: A crossâ€sectional study. Pediatric Allergy and Immunology, 2021, 32, 762-770.	2.6	29
20	Incorporation of CD55 into the Zika Viral Envelope Contributes to Its Stability against Human Complement. Viruses, 2021, 13, 510.	3.3	3
21	Different Cross-Reactivities of IgM Responses in Dengue, Zika and Tick-Borne Encephalitis Virus Infections. Viruses, 2021, 13, 596.	3.3	5
22	Profiles of current COVID-19 vaccines. Wiener Klinische Wochenschrift, 2021, 133, 271-283.	1.9	32
23	A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence. International Journal of Environmental Research and Public Health, 2021, 18, 4201.	2.6	0
24	Enteric Ganglioneuritis, a Common Feature in a Subcutaneous TBEV Murine Infection Model. Microorganisms, 2021, 9, 875.	3.6	6
25	Screening and Confirmatory Testing for SARS-CoV-2 Antibodies: Comparison of Health and Non-Health Workers in a Nationwide Healthcare Organization in Central Europe. Journal of Clinical Medicine, 2021, 10, 1909.	2.4	1
26	Performance of Four IgM Antibody Assays in the Diagnosis of Measles Virus Primary Infection and Cases with a Serological Profile Indicating Reinfection. Journal of Clinical Microbiology, 2021, 59, .	3.9	4
27	Assessment of S1-, S2-, and NCP-Specific IgM, IgA, and IgG Antibody Kinetics in Acute SARS-CoV-2 Infection by a Microarray and Twelve Other Immunoassays. Journal of Clinical Microbiology, 2021, 59, .	3.9	30
28	Dynamics and Extent of Non-Structural Protein 1-Antibody Responses in Tick-Borne Encephalitis Vaccination Breakthroughs and Unvaccinated Patients. Viruses, 2021, 13, 1007.	3.3	7
29	Subcutaneous injection of mRNA vaccines against severe acute respiratory syndrome coronavirus 2: an option for severe bleeding disorders or anticoagulated patients?. Blood Coagulation and Fibrinolysis, 2021, 32, 423-424.	1.0	5
30	Chapter 2b: The molecular antigenic structure of the TBEV. Tick-borne Encephalitis - the Book, 2021, , .	0.1	1
31	Low SARS-CoV-2 seroprevalence in the Austrian capital after an early governmental lockdown. Scientific Reports, 2021, 11, 10158.	3.3	13
32	Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
33	SARS-CoV-2 vaccination in rituximab-treated patients: B cells promote humoral immune responses in the presence of T-cell-mediated immunity. Annals of the Rheumatic Diseases, 2021, 80, 1345-1350.	0.9	211
34	Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. Npj Vaccines, 2021, 6, 104.	6.0	241
35	An Absolutely Conserved Tryptophan in the Stem of the Envelope Protein E of Flaviviruses Is Essential for the Formation of Stable Particles. Viruses, 2021, 13, 1727.	3.3	1

#	Article	IF	CITATIONS
37	Rapid, early and accurate SARS-CoV-2 detection using RT-qPCR in primary care: a prospective cohort study (REAP-1). BMJ Open, 2021, 11, e045225.	1.9	3
38	The regional decline and rise of tick-borne encephalitis incidence do not correlate with Lyme borreliosis, Austria, 2005 to 2018. Eurosurveillance, 2021, 26, .	7.0	6
39	Highly active engineered IgG3 antibodies against SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
40	Increased in vitro neutralizing activity of SARS-CoV-2 IgA1 dimers compared to monomers and IgG. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
41	Effectiveness and Safety of an Intravenous Immune Globulin (IVIC) Preparation in Post-exposure Prophylaxis (PEP) Against Measles in Infants. Frontiers in Pediatrics, 2021, 9, 762793.	1.9	2
42	Cervids as sentinelâ€species for tickâ€borne encephalitis virus in Norway ―A serological study. Zoonoses and Public Health, 2020, 67, 342-351.	2.2	19
43	Profile of SARS-CoV-2. Wiener Klinische Wochenschrift, 2020, 132, 635-644.	1.9	4
44	Dynamics of CD4 T Cell and Antibody Responses in COVID-19 Patients With Different Disease Severity. Frontiers in Medicine, 2020, 7, 592629.	2.6	54
45	Human recombinant soluble ACE2 in severe COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 1154-1158.	10.7	340
46	Humoral immune response to tick-borne encephalitis vaccination in allogeneic blood and marrow graft recipients. Npj Vaccines, 2020, 5, 67.	6.0	8
47	Development and characterization of specific <scp>antiâ€Usutu</scp> virus chickenâ€derived single chain variable fragment antibodies. Protein Science, 2020, 29, 2175-2188.	7.6	8
48	Obesity and Sex Affect the Immune Responses to Tick-Borne Encephalitis Booster Vaccination. Frontiers in Immunology, 2020, 11, 860.	4.8	23
49	Elevated CXCL10 Serum Levels in Measles Virus Primary Infection and Reinfection Correlate With the Serological Stage and Hospitalization Status. Journal of Infectious Diseases, 2020, 222, 2030-2034.	4.0	9
50	CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Frontiers in Immunology, 2020, 11, 16.	4.8	7
51	Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans. PLoS Neglected Tropical Diseases, 2020, 14, e0008034.	3.0	27
52	Extensive flavivirus E trimer breathing accompanies stem zippering of the postâ€fusion hairpin. EMBO Reports, 2020, 21, e50069.	4.5	8
53	Pre-existing yellow fever immunity impairs and modulates the antibody response to tick-borne encephalitis vaccination. Npj Vaccines, 2019, 4, 38.	6.0	47
54	When it is better to stay together. Nature Immunology, 2019, 20, 1266-1268.	14.5	1

#	Article	IF	CITATIONS
55	Detection of tick-borne encephalitis virus antibodies in sera of sheep and goats in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks and Tick-borne Diseases, 2019, 10, 901-904.	2.7	14
56	Experimental infection of lambs with tick-borne encephalitis virus and co-infection with Anaplasma phagocytophilum. PLoS ONE, 2019, 14, e0226836.	2.5	17
57	Continued expansion of tick-borne pathogens: Tick-borne encephalitis virus complex and Anaplasma phagocytophilum in Denmark. Ticks and Tick-borne Diseases, 2019, 10, 115-123.	2.7	31
58	Tickâ€borne encephalitis virus in cows and unpasteurized cow milk from Norway. Zoonoses and Public Health, 2019, 66, 216-222.	2.2	50
59	The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Reports, 2018, 19, 206-224.	4.5	188
60	Integrated analysis of human-animal-vector surveillance: West Nile virus infections in Austria, 2015–2016. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	22
61	Increase in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveillance, 2018, 23, .	7.0	69
62	CD4 T cell responses to flaviviruses. Journal of Clinical Virology, 2018, 108, 126-131.	3.1	13
63	Active Human Complement Reduces the Zika Virus Load via Formation of the Membrane-Attack Complex. Frontiers in Immunology, 2018, 9, 2177.	4.8	33
64	Proteolytic Activation of Flavivirus Envelope Proteins. , 2018, , 109-132.		2
65	Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Scientific Reports, 2018, 8, 9825.	3.3	72
66	Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Frontiers in Immunology, 2018, 9, 1196.	4.8	25
67	Allergic patients with and without allergen-specific immunotherapy mount protective immune responses to tick-borne encephalitis vaccination in absence of enhanced side effects or propagation of their Th2 bias. Vaccine, 2018, 36, 2816-2824.	3.8	12
68	The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	156
69	Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Scientific Reports, 2017, 7, 8907.	3.3	18
70	Flavivirus structural heterogeneity: implications for cell entry. Current Opinion in Virology, 2017, 24, 132-139.	5.4	62
71	Zika virus-induced itching rash in a returning traveller from Brazil. International Journal of Infectious Diseases, 2017, 54, 13-14.	3.3	3
72	A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathogens, 2017, 13, e1006643.	4.7	56

#	Article	IF	CITATIONS
73	No molecular or serological evidence of Zikavirus infection among healthy blood donors living in or travelling to regions where Aedes albopictus circulates. PLoS ONE, 2017, 12, e0178175.	2.5	9
74	Usutu virus infections among blood donors, Austria, July and August 2017 – Raising awareness for diagnostic challenges. Eurosurveillance, 2017, 22, .	7.0	57
75	Membrane Anchors of the Structural Flavivirus Proteins and Their Role in Virus Assembly. Journal of Virology, 2016, 90, 6365-6378.	3.4	45
76	Reduced naÃ⁻ve <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell priming efficacy in elderly adults. Aging Cell, 2016, 15, 14-21.	6.7	112
77	Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature, 2016, 536, 48-53.	27.8	465
78	Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection. PLoS ONE, 2015, 10, e0140545.	2.5	36
79	Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen. Journal of Virology, 2015, 89, 7970-7978.	3.4	23
80	Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination. Journal of Virology, 2014, 88, 13845-13857.	3.4	76
81	Specificities of Human CD4 ⁺ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction. Journal of Virology, 2014, 88, 7828-7842.	3.4	67
82	Mechanistic insights into the impairment of memory B cells and antibody production in the elderly. Age, 2013, 35, 371-381.	3.0	48
83	Aluminum Hydroxide Influences Not Only the Extent but Also the Fine Specificity and Functional Activity of Antibody Responses to Tick-Borne Encephalitis Virus in Mice. Journal of Virology, 2013, 87, 12187-12195.	3.4	18
84	The Membrane-Proximal "Stem―Region Increases the Stability of the Flavivirus E Protein Postfusion Trimer and Modulates Its Structure. Journal of Virology, 2013, 87, 9933-9938.	3.4	20
85	Dissection of Antibody Specificities Induced by Yellow Fever Vaccination. PLoS Pathogens, 2013, 9, e1003458.	4.7	61
86	Vaccination and Tick-borne Encephalitis, Central Europe. Emerging Infectious Diseases, 2013, 19, 69-76.	4.3	169
87	Tick-Borne Encephalitis (TBE) and Hepatitis B Nonresponders Feature Different Immunologic Mechanisms in Response to TBE and Influenza Vaccination with Involvement of Regulatory T and B Cells and IL-10. Journal of Immunology, 2013, 191, 2426-2436.	0.8	48
88	Flaviviruses and their antigenic structure. Journal of Clinical Virology, 2012, 55, 289-295.	3.1	124
89	Age Affects Quantity but Not Quality of Antibody Responses after Vaccination with an Inactivated Flavivirus Vaccine against Tick-Borne Encephalitis. PLoS ONE, 2012, 7, e34145.	2.5	79
90	Molecular mechanisms of flavivirus membrane fusion. Amino Acids, 2011, 41, 1159-1163.	2.7	98

#	Article	IF	CITATIONS
91	The Unique Transmembrane Hairpin of Flavivirus Fusion Protein E Is Essential for Membrane Fusion. Journal of Virology, 2011, 85, 4377-4385.	3.4	45
92	Mutational Analysis of the Zippering Reaction during Flavivirus Membrane Fusion. Journal of Virology, 2011, 85, 8495-8501.	3.4	19
93	Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice. Journal of Virology, 2011, 85, 1994-2003.	3.4	43
94	Decreased antibody titers and booster responses in tick-borne encephalitis vaccinees aged 50–90 years. Vaccine, 2010, 28, 3511-3515.	3.8	77
95	Impact of Quaternary Organization on the Antigenic Structure of the Tick-Borne Encephalitis Virus Envelope Glycoprotein E. Journal of Virology, 2009, 83, 8482-8491.	3.4	43
96	Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine, 2009, 27, 7021-7026.	3.8	97
97	Identification of specific histidines as pH sensors in flavivirus membrane fusion. Journal of Cell Biology, 2008, 183, 353-361.	5.2	153
98	Entry Functions and Antigenic Structure of Flavivirus Envelope Proteins. Novartis Foundation Symposium, 2008, , 57-73.	1.1	5
99	Characterization of a Structural Intermediate of Flavivirus Membrane Fusion. PLoS Pathogens, 2007, 3, e20.	4.7	76
100	Probing the Flavivirus Membrane Fusion Mechanism by Using Monoclonal Antibodies. Journal of Virology, 2007, 81, 11526-11531.	3.4	45
101	Flavivirus membrane fusion. Journal of General Virology, 2006, 87, 2755-2766.	2.9	162
102	Cryptic Properties of a Cluster of Dominant Flavivirus Cross-Reactive Antigenic Sites. Journal of Virology, 2006, 80, 9557-9568.	3.4	204
103	Entry functions and antigenic structure of flavivirus envelope proteins. Novartis Foundation Symposium, 2006, 277, 57-65; discussion 65-73, 251-3.	1.1	3
104	Differences in the Postfusion Conformations of Full-Length and Truncated Class II Fusion Protein E of Tick-Borne Encephalitis Virus. Journal of Virology, 2005, 79, 6511-6515.	3.4	17
105	Effect of Membrane Curvature-Modifying Lipids on Membrane Fusion by Tick-Borne Encephalitis Virus. Journal of Virology, 2004, 78, 8536-8542.	3.4	57
106	Characterization of a Membrane-Associated Trimeric Low-pH-Induced Form of the Class II Viral Fusion Protein E from Tick-Borne Encephalitis Virus and Its Crystallization. Journal of Virology, 2004, 78, 3178-3183.	3.4	55
107	Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO Journal, 2004, 23, 728-738.	7.8	526
108	Involvement of Lipids in Different Steps of the Flavivirus Fusion Mechanism. Journal of Virology, 2003, 77, 7856-7862.	3.4	86

#	Article	IF	CITATIONS
109	Membrane Interactions of the Tick-Borne Encephalitis Virus Fusion Protein E at Low pH. Journal of Virology, 2002, 76, 3784-3790.	3.4	119
110	Role of Metastability and Acidic pH in Membrane Fusion by Tick-Borne Encephalitis Virus. Journal of Virology, 2001, 75, 7392-7398.	3.4	60
111	Mutational Evidence for an Internal Fusion Peptide in Flavivirus Envelope Protein E. Journal of Virology, 2001, 75, 4268-4275.	3.4	295
112	Mapping of Functional Elements in the Stem-Anchor Region of Tick-Borne Encephalitis Virus Envelope Protein E. Journal of Virology, 1999, 73, 5605-5612.	3.4	178
113	Recombinant and virion-derived soluble and particulate immunogens for vaccination against tick-borne encephalitis. Vaccine, 1995, 13, 1636-1642.	3.8	104
114	Structural Changes and Functional Control of the Tick-Borne Encephalitis Virus Glycoprotein E by the Heterodimeric Association with Protein prM. Virology, 1994, 198, 109-117.	2.4	247
115	Chapter 2b: The molecular and antigenic structure of TBEV. Tick-borne Encephalitis - the Book, 0, , .	0.1	2
116	Heterogeneous SARS-CoV-2-Neutralizing Activities After Infection and Vaccination. Frontiers in Immunology, 0, 13, .	4.8	4