Fabian Thome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306515/publications.pdf

Version: 2024-02-01

933447 940533 34 405 10 16 citations h-index g-index papers 34 34 34 295 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Scalable Small-Signal and Noise Model for High-Electron-Mobility Transistors Working Down to Cryogenic Temperatures. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1097-1110.	4.6	9
2	A 67–116-GHz Cryogenic Low-Noise Amplifier in a 50-nm InGaAs Metamorphic HEMT Technology. IEEE Microwave and Wireless Components Letters, 2022, 32, 430-433.	3.2	10
3	A Wideband <i>E</i> / <i>W</i> -Band Low-Noise Amplifier MMIC in a 70-nm Gate-Length GaN HEMT Technology. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1367-1376.	4.6	17
4	A 1–170-GHz Distributed Down-Converter MMIC in 35-nm Gate-Length InGaAs mHEMT Technology. IEEE Microwave and Wireless Components Letters, 2022, 32, 748-751.	3.2	1
5	C-Band Low-Noise Amplifier MMIC with an Average Noise Temperature of 44.5 K and 24.8 mW Power Consumption. , 2022, , .		2
6	Limitations and Implementation Strategies of Interstage Matching in a 6-W, 28–38-GHz GaN Power Amplifier MMIC. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2541-2553.	4.6	18
7	A 75–305-GHz Power Amplifier MMIC With 10–14.9-dBm <i>P</i> Technology. IEEE Microwave and Wireless Components Letters, 2021, 31, 741-743.	$\sqrt{3.2}$	11
8	A 50-nm Gate-Length Metamorphic HEMT Technology Optimized for Cryogenic Ultra-Low-Noise Operation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3896-3907.	4.6	17
9	First Demonstration of Distributed Amplifier MMICs With More Than 300-GHz Bandwidth. IEEE Journal of Solid-State Circuits, 2021, 56, 2647-2655.	5.4	24
10	Noise Performance of Sub-100-nm Metamorphic HEMT Technologies. , 2020, , .		6
11	A Fully-Integrated W-Band I/Q-Down-Conversion MMIC for Use in Radio Astronomical Multi-Pixel Receivers. , 2020, , .		4
12	InGaAs MOSHEMT <i>W</i> -Band LNAs on Silicon and Gallium Arsenide Substrates. IEEE Microwave and Wireless Components Letters, 2020, 30, 1089-1092.	3.2	12
13	Low-Loss Millimeter-Wave SPDT Switch MMICs in a Metamorphic HEMT Technology. IEEE Microwave and Wireless Components Letters, 2020, 30, 197-200.	3.2	17
14	Frequency Multiplier and Mixer MMICs Based on a Metamorphic HEMT Technology Including Schottky Diodes. IEEE Access, 2020, 8, 12697-12712.	4.2	6
15	W-Band LNA MMICs Based on a Noise-Optimized 50-nm Gate-Length Metamorphic HEMT Technology. , 2019, , .		17
16	Highly linear 90-170 GHz SPDT Switch with High Isolation for Fully Integrated InP Transceivers. , 2019, , .		9
17	Millimeter-Wave Single-Pole Double-Throw Switches Based on a 100-nm Gate-Length AlGaN/GaN-HEMT Technology., 2019,,.		16
18	Broadband High-Power W-Band Amplifier MMICs Based on Stacked-HEMT Unit Cells. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1312-1318.	4.6	29

#	Article	IF	Citations
19	Highly Isolating and Broadband Single-Pole Double-Throw Switches for Millimeter-Wave Applications Up to 330 GHz. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1998-2009.	4.6	29
20	W-band SPDT switches in planar and tri-gate 100-nm gate-length GaN-HEMT technology. , 2018, , .		20
21	Compact Dual-Polarization Cryogenic Receiver Module for the 75-116 GHz band. , 2018, , .		2
22	Architecture of Highly Integrated Cryogenic Active Planar OrthoMode Transducer for the 3-mm Band. , 2018, , .		5
23	70-116-GHz LNAs in 35-nm and 50-nm Gate-Length Metamorphic HEMT Technologies for Cryogenic and Room-Temperature Operation. , 2018, , .		6
24	Comparison of a 35-nm and a 50-nm gate-length metamorphic HEMT technology for millimeter-wave low-noise amplifier MMICs. , 2017, , .		29
25	A 50-nm gate-length metamorphic HEMT distributed power amplifier MMIC based on stacked-HEMT unit cells. , 2017, , .		9
26	A W-band wireless communication transmitter utilizing a stacked-FET oscillator for high output power performance. , 2016 , , .		3
27	A millimeter-wave low-noise amplifier MMIC with integrated power detector and gain control functionality. , $2016, \ldots$		7
28	An investigation of millimeter wave switches based on shunt transistors including SPDT SWITCH MMICs up to 300 GHz. , 2016, , .		8
29	Stability Investigation of Large Gate-Width Metamorphic High Electron-Mobility Transistors at Cryogenic Temperature. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3139-3150.	4.6	16
30	Prospects and Limitations of Stacked-FET Approaches for Enhanced Output Power in Voltage-Controlled Oscillators. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 836-846.	4.6	13
31	Novel destructive-interference-envelope detector for high data rate ASK demodulation in wireless communication receivers. , 2015 , , .		11
32	Planar Zero Bias Schottky Diodes on an InGaAs Metamorphic HEMT MMIC Process. IEEE Microwave and Wireless Components Letters, 2014, 24, 860-862.	3.2	6
33	Low-power wireless data transmitter MMIC with data rates up to 25 Gbit/s and 9.5mW power consumption using a 113 GHz carrier. , 2014, , .		4
34	Comparison of two W-band low-noise amplifier MMICs with ultra low power consumption based on 50nm InGaAs mHEMT technology. , 2013, , .		12