List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306462/publications.pdf Version: 2024-02-01

	9254	17580
19,412	74	121
citations	h-index	g-index
054	054	10150
354	354	18150
docs citations	times ranked	citing authors
	citations 354	19,412 74 citations h-index 354 354

DALIL I VALDES

#	Article	IF	CITATIONS
1	The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development, 2011, 4, 543-570.	1.3	803
2	On the Existence of Storm-Tracks. Journals of the Atmospheric Sciences, 1990, 47, 1854-1864.	0.6	734
3	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	13.7	586
4	Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421, 622-624.	13.7	564
5	Genomic evidence for the Pleistocene and recent population history of Native Americans. Science, 2015, 349, aab3884.	6.0	449
6	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 2008, 31, 8-15.	2.1	345
7	Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 2006, 190, 269-287.	1.0	313
8	A new global biome reconstruction and dataâ€model comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, 17, 432-447.	2.7	275
9	Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 2004, 218, 363-377.	1.8	254
10	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	13.7	247
11	Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Climate Dynamics, 2006, 26, 513-529.	1.7	240
12	A review of palaeoclimates and palaeoenvironments in the Levant and Eastern Mediterranean from 25,000 to 5000 years BP: setting the environmental background for the evolution of human civilisation. Quaternary Science Reviews, 2006, 25, 1517-1541.	1.4	237
13	Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 2010, 3, 60-64.	5.4	230
14	High-latitude climate sensitivity to ice-sheet forcing over the last 120kyr. Quaternary Science Reviews, 2010, 29, 43-55.	1.4	214
15	Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews, 2013, 125, 123-145.	4.0	214
16	Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	197
17	A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Climate of the Past, 2012, 8, 1717-1736.	1.3	196
18	No high Tibetan Plateau until the Neogene. Science Advances, 2019, 5, eaav2189.	4.7	193

#	Article	IF	CITATIONS
19	Past East Asian monsoon evolution controlled by paleogeography, not CO ₂ . Science Advances, 2019, 5, eaax1697.	4.7	192
20	Built for stability. Nature Geoscience, 2011, 4, 414-416.	5.4	188
21	The BRIDGE HadCM3 family of climate models: HadCM3@BristolÂv1.0. Geoscientific Model Development, 2017, 10, 3715-3743.	1.3	188
22	Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature, 2012, 487, 219-222.	13.7	185
23	Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics, 2007, 30, 1-18.	1.7	181
24	The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophysical Research Letters, 2000, 27, 3053-3056.	1.5	168
25	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
26	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164
27	Late Pleistocene climate change and the global expansion of anatomically modern humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16089-16094.	3.3	157
28	Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet. National Science Review, 2019, 6, 495-504.	4.6	155
29	Why â€~the uplift of the Tibetan Plateau' is a myth. National Science Review, 2021, 8, nwaa091.	4.6	155
30	Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. Journal of Geophysical Research, 2009, 114, .	3.3	153
31	Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 1209-1230.	1.0	149
32	Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results. Global and Planetary Change, 2000, 25, 239-256.	1.6	148
33	Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1174-1179.	3.3	146
34	Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature, 2011, 470, 82-85.	13.7	145
35	High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?. Climate Dynamics, 2005, 24, 577-590.	1.7	142
36	Northern Hemisphere Storm Tracks in Present Day and Last Glacial Maximum Climate Simulations: A Comparison of the European PMIP Models*. Journal of Climate, 1999, 12, 742-760.	1.2	138

#	Article	IF	CITATIONS
37	A palaeoclimate model for the Kimmeridgian. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 95, 47-72.	1.0	130
38	Twenty-First-Century Climate Impacts from a Declining Arctic Sea Ice Cover. Journal of Climate, 2006, 19, 1109-1125.	1.2	127
39	New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 283, 91-98.	1.0	124
40	Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. Journal of Ecology, 2008, 96, 247-259.	1.9	122
41	Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Global and Planetary Change, 2017, 157, 114-138.	1.6	119
42	The ice age methane budget. Geophysical Research Letters, 2005, 32, .	1.5	117
43	Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17084-17093.	3.3	116
44	Tackling Regional Climate Change By Leaf Albedo Bio-geoengineering. Current Biology, 2009, 19, 146-150.	1.8	115
45	Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate. Earth and Planetary Science Letters, 2010, 292, 265-273.	1.8	114
46	Multiple causes of the Younger Dryas cold period. Nature Geoscience, 2015, 8, 946-949.	5.4	112
47	Jurassic climates. Proceedings of the Geologists Association, 2008, 119, 5-17.	0.6	109
48	Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9770-9775.	3.3	108
49	The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 2021, 17, 1065-1089.	1.3	107
50	Last glacial vegetation of northern Eurasia. Quaternary Science Reviews, 2010, 29, 2604-2618.	1.4	103
51	The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 254-267.	1.0	102
52	CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 2010, 38, 875-878.	2.0	100
53	On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 2012, 321-322, 128-138.	1.8	97
54	A permanent El Niño-like state during the Pliocene?. Paleoceanography, 2007, 22, n/a-n/a.	3.0	96

#	Article	IF	CITATIONS
55	The Maintenance of the Last Great Ice Sheets: A UGAMP GCM Study. Journal of Climate, 1996, 9, 1004-1019.	1.2	95
56	The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Climate Dynamics, 2003, 20, 203-218.	1.7	95
57	"Sunshade World― A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophysical Research Letters, 2008, 35, .	1.5	93
58	The early Eocene rise of the Gonjo Basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters, 2020, 543, 116312.	1.8	91
59	Modeling the Impact of Land Surface Degradation on the Climate of Tropical North Africa. Journal of Climate, 2001, 14, 1809-1822.	1.2	90
60	Impact of CO ₂ Doubling on the Asian Summer Monsoon. Journal of the Meteorological Society of Japan, 2000, 78, 421-439.	0.7	89
61	Leaf form–climate relationships on the global stage: an ensemble of characters. Global Ecology and Biogeography, 2015, 24, 1113-1125.	2.7	87
62	A Middle Eocene lowland humid subtropical "Shangri-La―ecosystem in central Tibet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32989-32995.	3.3	87
63	Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophysical Research Letters, 2000, 27, 1515-1518.	1.5	86
64	Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter. Nonlinear Processes in Geophysics, 2005, 12, 363-371.	0.6	85
65	Introduction. Pliocene climate, processes and problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3-17.	1.6	85
66	Sensitivity Studies of Northern Hemisphere Glaciation Using an Atmospheric General Circulation Model. Journal of Climate, 1995, 8, 2471-2496.	1.2	84
67	The 8200yr BP cold event in stable isotope records from the North Atlantic region. Global and Planetary Change, 2011, 79, 288-302.	1.6	84
68	Transient climate simulations of the deglaciation 21–9Âthousand years before present (versionÂ1) – PMIP4 Core experiment design and boundary conditions. Geoscientific Model Development, 2016, 9, 2563-2587.	1.3	84
69	Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography, 2016, 39, 152-161.	2.1	84
70	Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters, 2002, 29, 31-1-31-4.	1.5	83
71	Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dynamics, 2005, 25, 189-204.	1.7	83
72	Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Global and Planetary Change, 2009, 66, 208-224.	1.6	83

#	Article	IF	CITATIONS
73	Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 565-582.	1.8	83
74	Linear Stationary Wave Simulations of the Time-Mean Climatological Flow. Journals of the Atmospheric Sciences, 1989, 46, 2509-2527.	0.6	82
75	Global peatland initiation driven by regionally asynchronous warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4851-4856.	3.3	82
76	The rise and demise of the Paleogene Central Tibetan Valley. Science Advances, 2022, 8, eabj0944.	4.7	80
77	On the position of southern hemisphere westerlies at the Last Glacial Maximum: an outline of AGCM simulation results and evaluation of their implications. Quaternary Science Reviews, 2000, 19, 881-898.	1.4	79
78	A GCM Simulation of the Climate 6000 Years Ago. Journal of Climate, 1997, 10, 3-17.	1.2	78
79	Simulations of the Last Glacial Maximum climates using a general circulation model: prescribed versus computed sea surface temperatures. Climate Dynamics, 1998, 14, 571-591.	1.7	78
80	Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research, 2004, 25, 303-311.	0.6	76
81	Seaâ€surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography, 2012, 27, .	3.0	75
82	A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2395-2415.	1.6	71
83	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	1.3	71
84	Mid-Holocene NAO: A PMIP2 model intercomparison. Geophysical Research Letters, 2005, 32, .	1.5	69
85	The Late Cretaceous continental interior of Siberia: A challenge for climate models. Earth and Planetary Science Letters, 2008, 267, 228-235.	1.8	69
86	On the identification of a Pliocene time slice for data–model comparison. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120515.	1.6	69
87	Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. Journal of Biogeography, 2017, 44, 709-721.	1.4	68
88	Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials. Climate of the Past, 2010, 6, 431-443.	1.3	67
89	Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology and Evolution, 2019, 3, 1419-1429.	3.4	67
90	Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advances, 2021, 7, .	4.7	66

#	Article	IF	CITATIONS
91	Characterizing GCM Land Surface Schemes to Understand Their Responses to Climate Change. Journal of Climate, 2000, 13, 3066-3079.	1.2	65
92	Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8705-8709.	3.3	65
93	Characterizing ice sheets during the Pliocene: evidence from data and models. , 0, , 517-538.		64
94	Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 156, 147-160.	1.0	63
95	The modern dust cycle: Comparison of model results with observations and study of sensitivities. Journal of Geophysical Research, 2002, 107, AAC 1-1-AAC 1-16.	3.3	63
96	Abrupt BÃ,lling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophysical Research Letters, 2016, 43, 9130-9137.	1.5	62
97	The influence of Carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 131-140.	1.8	61
98	Investigating early hominin dispersal patterns: developing a framework for climate data integration. Journal of Human Evolution, 2007, 53, 465-474.	1.3	60
99	Antarctic isotopic thermometer during a CO ₂ forced warming event. Journal of Geophysical Research, 2008, 113, .	3.3	60
100	Uncertainties in the modelled CO ₂ threshold for Antarctic glaciation. Climate of the Past, 2014, 10, 451-466.	1.3	59
101	The climatic impact of supervolcanic ash blankets. Climate Dynamics, 2007, 29, 553-564.	1.7	58
102	A model–model and data–model comparison for the early Eocene hydrological cycle. Climate of the Past, 2016, 12, 455-481.	1.3	58
103	Nonlinear Orographically Forced Planetary Waves. Journals of the Atmospheric Sciences, 1991, 48, 2089-2106.	0.6	57
104	The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130123.	1.6	57
105	Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 92-97.	1.0	55
106	Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophysical Research Letters, 2013, 40, 5199-5204.	1.5	55
107	Prediction of modern bauxite occurrence: implications for climate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 131, 1-13.	1.0	54
108	Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day. Geophysical Research Letters, 2001, 28, 295-298.	1.5	54

#	Article	IF	CITATIONS
109	Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 83-91.	1.0	54
110	A comparison of GCM simulated Cretaceous `greenhouse' and `icehouse' climates: implications for the sedimentary record. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 142, 123-138.	1.0	53
111	Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nature Communications, 2014, 5, 4631.	5.8	53
112	Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96.	1.8	49
113	Baroclinic Instability of the Zonally Averaged Flow with Boundary Layer Damping. Journals of the Atmospheric Sciences, 1988, 45, 1584-1593.	0.6	48
114	Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework. Climate Dynamics, 2007, 29, 591-613.	1.7	48
115	Late Quaternary climate legacies in contemporary plant functional composition. Global Change Biology, 2018, 24, 4827-4840.	4.2	48
116	Vegetation cover in a warmer world simulated using a dynamic global vegetation model for the Mid-Pliocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237, 412-427.	1.0	47
117	Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: Geological evidence and modelling results compared. Earth-Science Reviews, 2009, 94, 79-94.	4.0	47
118	Organic matter distribution in the modern sediments of the Pearl River Estuary. Organic Geochemistry, 2012, 49, 68-82.	0.9	47
119	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	3.0	47
120	Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,497.	1.2	46
121	Antarctic last interglacial isotope peak in response to sea ice retreat not ice-sheet collapse. Nature Communications, 2016, 7, 12293.	5.8	46
122	Weather regimes in past climate atmospheric general circulation model simulations. Climate Dynamics, 1999, 15, 773-793.	1.7	45
123	Climate envelope models suggest spatioâ€ŧemporal coâ€occurrence of refugia of <scp>A</scp> frican birds and mammals. Global Ecology and Biogeography, 2013, 22, 351-363.	2.7	45
124	An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters, 2008, 35, .	1.5	44
125	Global vegetation patterns of the past 140,000 years. Journal of Biogeography, 2020, 47, 2073-2090.	1.4	44
126	Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems. PLoS ONE, 2013, 8, e61963.	1.1	43

#	Article	IF	CITATIONS
127	Reconstructing paleosalinity from δ180: Coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. Quaternary Science Reviews, 2016, 131, 350-364.	1.4	43
128	Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Scientific Reports, 2017, 7, 9382.	1.6	43
129	Terrestrial biosphere changes over the last 120â€ [–] kyr. Climate of the Past, 2016, 12, 51-73.	1.3	43
130	Magnitude of climate variability during middle Pliocene warmth: a palaeoclimate modelling study. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 188, 1-24.	1.0	42
131	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	2.8	42
132	Dust deposition and provenance at the Last Glacial Maximum and present day. Geophysical Research Letters, 2002, 29, 42-1-42-4.	1.5	41
133	Deep ocean temperatures through time. Climate of the Past, 2021, 17, 1483-1506.	1.3	41
134	South American palaeoclimate model simulations: how reliable are the models?. Journal of Quaternary Science, 2000, 15, 357-368.	1.1	40
135	Validation of ECMWF (re)analysis surface climate data, 1979-1998, for Greenland and implications for mass balance modelling of the ice sheet. International Journal of Climatology, 2001, 21, 171-195.	1.5	39
136	Simulating idealized Dansgaard-Oeschger events and their potential impacts on the global methane cycle. Quaternary Science Reviews, 2011, 30, 3258-3268.	1.4	39
137	Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophysical Research Letters, 2017, 44, 383-392.	1.5	39
138	Multi vegetation model evaluation of the Green Sahara climate regime. Geophysical Research Letters, 2017, 44, 6804-6813.	1.5	39
139	Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 2020, 13, 65-70.	5.4	39
140	Quantifying the relative importance of land cover change from climate and land use in the representative concentration pathways. Global Biogeochemical Cycles, 2015, 29, 842-853.	1.9	38
141	Understanding the glacial methane cycle. Nature Communications, 2017, 8, 14383.	5.8	37
142	A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene. Earth and Planetary Science Letters, 2008, 271, 53-62.	1.8	36
143	Reconciling the changes in atmospheric methane sources and sinks between the Last Glacial Maximum and the pre-industrial era. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	36
144	Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis. Climate of the Past, 2014, 10, 607-622.	1.3	36

#	Article	IF	CITATIONS
145	Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model. Climate Dynamics, 2014, 42, 859-877.	1.7	35
146	Last glacial maximum radiative forcing from mineral dust aerosols in an Earth system model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8186-8205.	1.2	35
147	Modelling the Asian summer monsoon rainfall and Eurasian winter/spring snow mass. Quarterly Journal of the Royal Meteorological Society, 1998, 124, 2567-2596.	1.0	34
148	Modelling Late Oligocene C4 grasses and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 239-253.	1.0	34
149	Optimal tuning of a GCM using modern and glacial constraints. Climate Dynamics, 2011, 37, 705-719.	1.7	34
150	Topography's crucial role in Heinrich Events. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16688-16693.	3.3	34
151	Full effects of land use change in the representative concentration pathways. Environmental Research Letters, 2014, 9, 114014.	2.2	34
152	A new constraint on the size of Heinrich Events from an iceberg/sediment model. Earth and Planetary Science Letters, 2014, 386, 1-9.	1.8	34
153	Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics?. Geophysical Research Letters, 2017, 44, 6373-6382.	1.5	34
154	Nonâ€random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 2019, 28, 928-942.	2.7	34
155	Climate model predictions for the latest Cretaceous: An evaluation using climatically sensitive sediments as proxy indicators. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316, 12-23.	1.0	33
156	Sensitivity of a coupled climate model to canopy interception capacity. Climate Dynamics, 2014, 42, 1715-1732.	1.7	33
157	Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. Paleoceanography and Paleoclimatology, 2018, 33, 807-824.	1.3	33
158	Out of Amazonia: Late-Holocene climate change and the Tupi–Guarani trans-continental expansion. Holocene, 2017, 27, 967-975.	0.9	32
159	Global middle Pliocene biome reconstruction: A data/model synthesis. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-18.	1.0	31
160	Modeling the 8.2ka event using a coupled atmosphere–ocean GCM. Global and Planetary Change, 2011, 79, 312-321.	1.6	31
161	A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Scientific Data, 2019, 6, 265.	2.4	31
162	Warm climates of the past—a lesson for the future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130146.	1.6	30

#	Article	IF	CITATIONS
163	Amplified plant turnover in response to climate change forecast by Late Quaternary records. Nature Climate Change, 2016, 6, 1115-1119.	8.1	30
164	Oligocene climate signals and forcings in Eurasia revealed by plant macrofossil and modelling results. Gondwana Research, 2018, 61, 115-127.	3.0	30
165	Comment on "Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene― Science, 2019, 365, .	6.0	30
166	Evaluating the efficacy of planktonic foraminifer calcite δ180 data for sea surface temperature reconstruction for the Late Miocene. Geobios, 2005, 38, 843-863.	0.7	29
167	The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 213-243.	0.6	29
168	Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model. Climate of the Past, 2006, 2, 221-235.	1.3	28
169	Modelling of hydrology and potential population levels at Bronze Age Jawa, Northern Jordan: a Monte Carlo approach to cope with uncertainty. Journal of Archaeological Science, 2008, 35, 517-529.	1.2	28
170	The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. Geophysical Research Letters, 2015, 42, 9970-9979.	1.5	28
171	Windâ€Driven Evolution of the North Pacific Subpolar Gyre Over the Last Deglaciation. Geophysical Research Letters, 2020, 47, e2019GL086328.	1.5	28
172	Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182, 93-115.	1.0	27
173	The Midâ€Brunhes Event and West Antarctic ice sheet stability. Journal of Quaternary Science, 2011, 26, 474-477.	1.1	27
174	Ecosystem CO ₂ starvation and terrestrial silicate weathering: mechanisms and globalâ€scale quantification during the late Miocene. Journal of Ecology, 2012, 100, 31-41.	1.9	27
175	First Nd isotope record of Mediterranean–Atlantic water exchange through the Moroccan Rifian Corridor during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 2013, 368, 163-174.	1.8	27
176	Last glacial maximum constraints on the Earth System model HadGEM2-ES. Climate Dynamics, 2015, 45, 1657-1672.	1.7	27
177	Quantitative palaeoclimate GCM validation: Late Jurassic and mid-Cretaceous case studies. Journal of the Geological Society, 1997, 154, 769-772.	0.9	26
178	A new regional, mid-Holocene palaeoprecipitation signal of the Asian Summer Monsoon. Quaternary Science Reviews, 2013, 78, 65-76.	1.4	26
179	Ecosystem state shifts during longâ€ŧerm development of an Amazonian peatland. Global Change Biology, 2018, 24, 738-757.	4.2	26
180	On the Role of Dustâ€Climate Feedbacks During the Midâ€Holocene. Geophysical Research Letters, 2019, 46, 1612-1621.	1.5	26

#	Article	IF	CITATIONS
181	Modelling Late Jurassic Milankovitch climate variations. Geological Society Special Publication, 1995, 85, 115-132.	0.8	25
182	The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard. Cryosphere, 2012, 6, 35-50.	1.5	25
183	Explaining patterns of avian diversity and endemicity: climate and biomes of southern Africa over the last 140,000Âyears. Journal of Biogeography, 2016, 43, 874-886.	1.4	25
184	Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. Royal Society Open Science, 2019, 6, 182111.	1.1	25
185	Latest Neogene monsoon of the Chotanagpur Plateau, eastern India, as revealed by fossil leaf architectural signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109641.	1.0	25
186	Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 213, 37-63.	1.0	25
187	Atmospheric equilibrium, instability and energy transport at the last glacial maximum. Climate Dynamics, 1996, 12, 497-511.	1.7	24
188	Geological evaluation of climate General Circulation Models and model implications for Mesozoic cloud cover. Terra Nova, 1997, 9, 75-78.	0.9	24
189	Modelling equable climates of the Late Cretaceous: Can new boundary conditions resolve data–model discrepancies?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 41-51.	1.0	24
190	Dating, synthesis, and interpretation of palaeoclimatic records of the Last Glacial cycle and model-data integration: advances by the INTIMATE (INTegration of Ice-core, MArine and TErrestrial) Tj ETQq0 0 () rg b.]4/0v	erlozek 10 Tf 5
191	The biogeophysical climatic impacts of anthropogenic land use change during the Holocene. Climate of the Past, 2016, 12, 923-941.	1.3	24
192	The Spatial Structure of the 128Âka Antarctic Sea Ice Minimum. Geophysical Research Letters, 2017, 44, 11,129.	1.5	24
193	Insolation forcing of the Australian monsoon as controls of Pleistocene mega-lake events. Geophysical Research Letters, 2003, 30, .	1.5	23
194	Dynamics of a global-scale vegetation model. Ecological Modelling, 2006, 198, 452-462.	1.2	23
195	Using synoptic type analysis to understand New Zealand climate during the Mid-Holocene. Climate of the Past, 2011, 7, 1189-1207.	1.3	23
196	The parameterisation of Mediterranean–Atlantic water exchange in the Hadley Centre model HadCM3, and its effect on modelled North Atlantic climate. Ocean Modelling, 2013, 62, 11-16.	1.0	22
197	Impact of meltwater on high-latitude early Last Interglacial climate. Climate of the Past, 2016, 12, 1919-1932.	1.3	22
198	Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Climate of the Past, 2017, 13, 1381-1401.	1.3	22

#	Article	IF	CITATIONS
199	Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
200	Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2. Nature Geoscience, 2021, 14, 659-664.	5.4	22
201	Climates at the Last Glacial Maximum: Influence of Model Horizontal Resolution. Journal of Climate, 2000, 13, 1554-1573.	1.2	21
202	Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations. Hydrology and Earth System Sciences, 2009, 13, 1545-1553.	1.9	21
203	Modelling the climatic niche of turtles: a deep-time perspective. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161408.	1.2	21
204	Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: A cautionary tale. Global and Planetary Change, 2019, 181, 102991.	1.6	21
205	A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years. Scientific Data, 2021, 8, 228.	2.4	21
206	Damping seasonal variations. Nature, 1994, 372, 221-221.	13.7	20
207	Patterns and Variations of Snow Accumulation over Greenland, 1979–98, from ECMWF Analyses, and Their Verification. Journal of Climate, 2001, 14, 3521-3535.	1.2	20
208	How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity?. Geophysical Research Letters, 2015, 42, 5533-5539.	1.5	20
209	Leaf physiognomy records the Miocene intensification of the South Asia Monsoon. Clobal and Planetary Change, 2021, 196, 103365.	1.6	20
210	Paleoclimate-conditioning reveals a North Africa land–atmosphere tipping point. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
211	Controls on the tropospheric oxidizing capacity during an idealized Dansgaardâ€Oeschger event, and their implications for the rapid rises in atmospheric methane during the last glacial period. Geophysical Research Letters, 2012, 39, .	1.5	19
212	Optimising the FAMOUS climate model: inclusion of global carbon cycling. Geoscientific Model Development, 2013, 6, 141-160.	1.3	19
213	The Greenland Ice Sheet's surface mass balance in a seasonally sea iceâ€free Arctic. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1533-1544.	1.0	19
214	Climatic Impacts of Land-Use Change due to Crop Yield Increases and a Universal Carbon Tax from a Scenario Model*. Journal of Climate, 2014, 27, 1413-1424.	1.2	19
215	Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Global Ecology and Biogeography, 2017, 26, 359-370.	2.7	19
216	CMIP6/PMIP4 simulations of the mid-Holocene and Last Interglacial using HadGEM3: comparison to the pre-industrial era, previous model versions and proxy data. Climate of the Past, 2020, 16, 1429-1450.	1.3	19

#	Article	IF	CITATIONS
217	Modelling the climate response to orbital forcing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 1873-1890.	1.6	18
218	Atmospheric contributions to the surface mass balance of Greenland in the HadAM3 atmospheric model. Journal of Geophysical Research, 2002, 107, ACL 3-1-ACL 3-20.	3.3	18
219	Holocene temperature trends in the extratropical Northern Hemisphere based on interâ€model comparisons. Journal of Quaternary Science, 2018, 33, 464-476.	1.1	18
220	Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison. Climate of the Past, 2020, 16, 555-573.	1.3	18
221	The Atmospheric Impact of Uncertainties in Recent Arctic Sea Ice Reconstructions. Journal of Climate, 2005, 18, 3996-4012.	1.2	17
222	Suborbital climatic variability and centres of biological diversity in the Cape region of southern Africa. Journal of Biogeography, 2014, 41, 1338-1351.	1.4	17
223	Paleoclimate model-derived thermal lapse rates: Towards increasing precision in paleoaltimetry studies. Earth and Planetary Science Letters, 2021, 564, 116903.	1.8	17
224	Late Cretaceous and Cenozoic global palaeogeographies: Mapping the transition from a "hot-house― to an "ice-house―world. Gff, 2000, 122, 103-103.	0.4	16
225	An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. Geoscientific Model Development, 2013, 6, 1447-1462.	1.3	16
226	Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard–Oeschger climate event: insights from two models of different complexity. Climate of the Past, 2013, 9, 149-171.	1.3	16
227	The Role of CO2 and Dynamic Vegetation on the Impact of Temperate Land-Use Change in the HadCM3 Coupled Climate Model. Earth Interactions, 2016, 20, 1-20.	0.7	16
228	Holocene temperature evolution in the Northern Hemisphere high latitudes – Model-data comparisons. Quaternary Science Reviews, 2017, 173, 101-113.	1.4	16
229	Simulating the Last Interglacial Greenland stable water isotope peak: The role of Arctic sea ice changes. Quaternary Science Reviews, 2018, 198, 1-14.	1.4	16
230	Simulating the climate response to atmospheric oxygen variability in the Phanerozoic: a focus on the Holocene, Cretaceous and Permian. Climate of the Past, 2019, 15, 1463-1483.	1.3	16
231	Tundra environments in the Neogene Sirius Group, Antarctica: evidence from the geological record and coupled atmosphere–vegetation models. Journal of the Geological Society, 2007, 164, 317-322.	0.9	15
232	Reduced cooling following future volcanic eruptions. Climate Dynamics, 2018, 51, 1449-1463.	1.7	15
233	Polar amplification of Pliocene climate by elevated trace gas radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23401-23407.	3.3	15

Atmospheric general circulation models of the Jurassic. , 1994, , 109-118.

#	Article	IF	CITATIONS
235	Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet. Nature Communications, 2022, 13, .	5.8	15
236	Sensitivity of the Northern Hemisphere climate of the Last Glacial Maximum to sea surface temperatures. Climate Dynamics, 2001, 17, 233-248.	1.7	14
237	Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography, 2017, 32, 74-89.	3.0	14
238	Assessing Mechanisms and Uncertainty in Modeled Climatic Change at the Eoceneâ€Oligocene Transition. Paleoceanography and Paleoclimatology, 2019, 34, 16-34.	1.3	14
239	New insights into the thermal regime and hydrodynamics of the early Late Cretaceous Arctic. Geological Magazine, 2020, 157, 1729-1746.	0.9	14
240	Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate. Climate Dynamics, 2018, 51, 3797-3813.	1.7	13
241	The Mechanisms that Determine the Response of the Northern Hemisphere's Stationary Waves to North American Ice Sheets. Journal of Climate, 2019, 32, 3917-3940.	1.2	12
242	Drivers of Holocene palsa distribution in North America. Quaternary Science Reviews, 2020, 240, 106337.	1.4	12
243	Optimization of integrated Earth System Model components using Grid-enabled data management and computation. Concurrency Computation Practice and Experience, 2007, 19, 153-165.	1.4	11
244	ENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction. Nonlinear Processes in Geophysics, 2008, 15, 339-363.	0.6	11
245	Assessing the mitigation potential of forestry activities in a changing climate: A case study for Karnataka. Forest Policy and Economics, 2010, 12, 277-286.	1.5	11
246	Investigating the Impact of CO2 on Low-Frequency Variability of the AMOC in HadCM3. Journal of Climate, 2017, 30, 7863-7883.	1.2	11
247	Mid-Latitude Depressions during the Last Ice-Age. , 1994, , 511-531.		11
248	The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau. Science China Earth Sciences, 2022, 65, 1339-1352.	2.3	11
249	Synoptic-scale perturbations in AGCM simulations of the present and Last Glacial Maximum climates. Climate Dynamics, 2000, 16, 517-533.	1.7	10
250	Latitudinal diversity gradients in Mesozoic non-marine turtles. Royal Society Open Science, 2016, 3, 160581.	1.1	10
251	Green Mountains and White Plains: The Effect of Northern Hemisphere Ice Sheets on the Global Energy Budget. Journal of Climate, 2017, 30, 3887-3905.	1.2	10
252	Simulating the 128â€ka Antarctic Climate Response to Northern Hemisphere Ice Sheet Melting Using the Isotopeâ€Enabled HadCM3. Geophysical Research Letters, 2018, 45, 11,921.	1.5	10

#	Article	IF	CITATIONS
253	Numerical simulations of oceanic oxygen cycling in the FAMOUS Earth-System model: FAMOUS-ES, version 1.0. Geoscientific Model Development, 2014, 7, 1419-1431.	1.3	10
254	What are the drivers of Caspian Sea level variation during the late Quaternary?. Quaternary Science Reviews, 2022, 283, 107457.	1.4	10
255	Limited response of peatland CH ₄ emissions to abrupt Atlantic Ocean circulation changes in glacial climates. Climate of the Past, 2014, 10, 137-154.	1.3	9
256	Bayesian Analysis of the Glacialâ€Interglacial Methane Increase Constrained by Stable Isotopes and Earth System Modeling. Geophysical Research Letters, 2018, 45, 3653-3663.	1.5	9
257	Reassessing the Value of Regional Climate Modeling Using Paleoclimate Simulations. Geophysical Research Letters, 2019, 46, 12464-12475.	1.5	9
258	Spatial contrasts of the Holocene hydroclimate trend between North and East Asia. Quaternary Science Reviews, 2020, 227, 106036.	1.4	8
259	Projected climatic changes lead to biome changes in areas of previously constant biome. Journal of Biogeography, 2021, 48, 2418-2428.	1.4	8
260	Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 1209-1230.	1.0	8
261	Global terrestrial productivity in the Mid-Cretaceous (100 Ma): Model simulations and data. , 1999, , .		7
262	Using the Midâ€Holocene "Greening―of the Sahara to Narrow Acceptable Ranges on Climate Model Parameters. Geophysical Research Letters, 2021, 48, e2020GL092043.	1.5	7
263	Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211342.	1.2	7
264	Warm climate forcing mechanisms. , 1999, , 3-20.		6
265	An evaluation of two spatial interpolation techniques in global sea-surface temperature reconstructions: Last Glacial Maximum and Pliocene case studies. Quaternary Science Reviews, 2004, 23, 1041-1051.	1.4	6
266	The role of basal hydrology in the surging of the Laurentide Ice Sheet. Climate of the Past, 2016, 12, 1601-1617.	1.3	6
267	Model evidence for a seasonal bias in Antarctic ice cores. Nature Communications, 2018, 9, 1361.	5.8	6
268	Investigating the feedbacks between CO2, vegetation and the AMOC in a coupled climate model. Climate Dynamics, 2019, 53, 2485-2500.	1.7	5
269	Climate and vegetation change during the Upper Siwalik—a study based on the palaeobotanical record of the eastern Himalaya. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 103-121.	0.6	5
270	Antarctic Ice Sheet Elevation Impacts on Water Isotope Records During the Last Interglacial. Geophysical Research Letters, 2021, 48, e2020GL091412.	1.5	5

#	Article	IF	CITATIONS
271	Multi-variate factorisation of numerical simulations. Geoscientific Model Development, 2021, 14, 4307-4317.	1.3	5
272	The mid-Pliocene warm period: A test-bed for integrating data and models. , 0, , 443-457.		5
273	Complexities in interpreting chironomid-based temperature reconstructions over the Holocene from a lake in Western Ireland. Quaternary Science Reviews, 2019, 222, 105908.	1.4	4
274	A predictive algorithm for wetlands in deep time paleoclimate models. Geoscientific Model Development, 2019, 12, 1351-1364.	1.3	4
275	Atmospheric equilibrium, instability and energy transport at the last glacial maximum. Climate Dynamics, 1996, 12, 497-511.	1.7	4
276	Climate and climate change. Current Biology, 2009, 19, R563-R566.	1.8	3
277	A new global biome reconstruction and data-model comparison for the Middle Pliocene. Clobal Ecology and Biogeography, 2008, , .	2.7	3
278	Effect of orographic gravity wave drag on Northern Hemisphere climate in transient simulations of the last deglaciation. Climate Dynamics, 2022, 59, 2067-2079.	1.7	3
279	Shallow Water Records of the PETM: Novel Insights From NE India (Eastern Tethys). Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	3
280	Exploring synergies between the Clean Development Mechanism and national forest policies in India to advance sustainable development for a post-2012 climate policy. Climate and Development, 2010, 2, 207-220.	2.2	2
281	Implications of ocean expansion. Nature Climate Change, 2011, 1, 299-300.	8.1	1
282	Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. , 0, .		1
283	The Palaeogeographic and Palaeoclimatic Evolution of Australasia: Palaeo-Productivity Modelling and the Predictive Mapping of Source Rock Environments. , 2015, , .		1
284	â€~Equability' in an unequal world: The early Eocene revisited. Gff, 2000, 122, 101-102.	0.4	0
285	Palaeoclimate studies at the millennium the role of the coupled system. International Geophysics, 2002, 83, 316-325.	0.6	0
286	Dedication: Prof. Bruce William Sellwood (1946–2007). Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 19-20.	1.6	0
287	Corrigendum to "The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard" published in The Cryosphere, 6, 35–50, 2012. Cryosphere, 2012, 6, 141-141.	1.5	0
288	Reply to Wainwright and Ayala: Synchronicity of climate and cultural proxies around 8.2 kyBP at Çatalhöyük. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3345-3346.	3.3	0

#	Article	IF	CITATIONS
289	Sea ice feedbacks influence the isotopic signature of Greenland ice sheet elevation changes: last interglacial HadCM3 simulations. Climate of the Past, 2020, 16, 2485-2508.	1.3	0