
Toshiyuki Hamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability of <scp>d</scp> ″uciferin for bioluminescence to detect gene expression in freely moving mice for long durations. Luminescence, 2021, 36, 94-98.	2.9	6
2	Period1 gene expression in the olfactory bulb and liver of freely moving streptozotocin-treated diabetic mouse. Biochemical and Biophysical Research Communications, 2021, 560, 14-20.	2.1	3
3	The analysis of Period1 gene expression inÂvivo and inÂvitro using a micro PMT system. Biochemical and Biophysical Research Communications, 2021, 577, 64-70.	2.1	2
4	Double recording system of Period1 gene expression rhythm in the olfactory bulb and liver in freely moving mouse. Biochemical and Biophysical Research Communications, 2020, 529, 898-903.	2.1	5
5	Mouse period1 gene expression recording from olfactory bulb under free moving conditions with a portable optic fibre device. Luminescence, 2020, 35, 1248-1253.	2.9	4
6	3D Transformation Matrix Calculation and Pixel Intensity Normalization for the Dual Focus Tracking System. Journal of Medical and Biological Engineering, 2019, 39, 952-959.	1.8	2
7	In vivo imaging of clock gene expression in multiple tissues of freely moving mice. Nature Communications, 2016, 7, 11705.	12.8	44
8	Age-related expression analysis of mouse liver nuclear protein binding to 3′-untranslated region of Period2 gene. Journal of Physiological Sciences, 2015, 65, 349-357.	2.1	1
9	Role of p53 in the entrainment of mammalian circadian behavior rhythms. Genes To Cells, 2014, 19, 441-448.	1.2	11
10	JNK regulates the photic response of the mammalian circadian clock. EMBO Reports, 2012, 13, 455-461.	4.5	50
11	Light responsiveness of clock genes, Per1 and Per2, in the olfactory bulb of mice. Biochemical and Biophysical Research Communications, 2011, 409, 727-731.	2.1	22
12	The role of GABAergic neuron on NMDA- and SP-induced phase delays in the suprachiasmatic nucleus neuronal activity rhythm in vitro. Neuroscience Letters, 2010, 468, 344-347.	2.1	5
13	Heterogeneous Nuclear Ribonucleoprotein A3 Is the Liver Nuclear Protein Binding to Age Related Increase Element RNA of the Factor IX Gene. PLoS ONE, 2010, 5, e12971.	2.5	12
14	Targeted mutation of the calbindin D _{28K} gene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 27, 2907-2921.	2.6	34
15	Targeted mutation of the calbindin D28Kgene disrupts circadian rhythmicity and entrainment. European Journal of Neuroscience, 2008, 28, 1030-1030.	2.6	0
16	Age-Related Homeostasis and Hemostatic System. , 2008, , 427-438.		1
17	Differential effect of lithium on the circadian oscillator in young and old hamsters. Biochemical and Biophysical Research Communications, 2007, 354, 752-756.	2.1	16
18	Temporal and spatial expression patterns of canonical clock genes and clockâ€controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience, 2004, 19, 1741-1748.	2.6	120

Τοςηιγικι Ηαμαδα

#	Article	IF	CITATIONS
19	Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinaseâ€3 protein expression in the mouse suprachiasmatic nuclei. European Journal of Neuroscience, 2004, 19, 2281-2287.	2.6	103
20	The role of Clock in the plasticity of circadian entrainment. Biochemical and Biophysical Research Communications, 2004, 318, 893-898.	2.1	9
21	The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus. Neuroscience Letters, 2004, 362, 87-90.	2.1	40
22	Calbindin Influences Response to Photic Input in Suprachiasmatic Nucleus. Journal of Neuroscience, 2003, 23, 8820-8826.	3.6	43
23	Circadian Rhythms in the Endocrine System. , 2002, , 33-91.		25
24	Expression of <i>Period</i> Genes: Rhythmic and Nonrhythmic Compartments of the Suprachiasmatic Nucleus Pacemaker. Journal of Neuroscience, 2001, 21, 7742-7750.	3.6	215
25	Involvement of glutamate release in substance P-induced phase delays of suprachiasmatic neuron activity rhythm in vitro. Brain Research, 1999, 836, 190-193.	2.2	31
26	Differential expression patterns of inositol trisphosphate receptor types 1 and 3 in the rat suprachiasmatic nucleus. Brain Research, 1999, 838, 131-135.	2.2	12
27	The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neuroscience Letters, 1999, 263, 125-128.	2.1	47
28	Diurnal regulation of a DNA binding protein to the period repeat sequence in the SCN nuclear extract of rat brain. Molecular Brain Research, 1999, 65, 211-215.	2.3	1
29	The Expression of the Melatonin Synthesis Enzyme: ArylalkylamineN-Acetyltransferase in the Suprachiasmatic Nucleus of Rat Brain. Biochemical and Biophysical Research Communications, 1999, 258, 772-777.	2.1	22
30	NMDA induced glutamate release from the suprachiasmatic nucleus: an in vitro study in the rat. Neuroscience Letters, 1998, 256, 93-96.	2.1	18
31	Examination of DNA-binding activity of neuronal transcription factors by electrophoretical mobility shift assay. Brain Research Protocols, 1998, 2, 243-249.	1.6	13
32	The Localization of the Site of ArylalkylamineN-Acetyltransferase Circadian Expression in the Photoreceptor Cells of Mammalian Retina. Biochemical and Biophysical Research Communications, 1998, 248, 115-120.	2.1	76
33	The involvement of calmodulin and Ca2+/calmodulin-dependent protein kinase II in the circadian rhythms controlled by the suprachiasmatic nucleus. Neuroscience Letters, 1997, 227, 45-48.	2.1	41
34	Adenosine A1-receptor agonist attenuates the light-induced phase shifts and fos expression in vivo and optic nerve stimulation-evoked field potentials in the suprachiasmatic nucleus in vitro. Brain Research, 1996, 740, 329-336.	2.2	28
35	Involvement of vasoactive intestinal polypeptide in NMDA-induced phase delay of firing activity rhythm in the suprachiasmatic nucleus in vitro. Neuroscience and Biobehavioral Reviews, 1994, 18, 591-595.	6.1	24
36	Effects of nitric oxide synthase inhibitors onN-methyl-d-aspartate-induced phase delay of circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro. Brain Research, 1994, 646, 161-164.	2.2	69

Τοςηιγικι Ηαμαδά

#	Article	IF	CITATIONS
37	Protein-synthesis inhibitor blocks (R,S)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- or substance P-induced phase shift of the circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro. Neuroscience Letters, 1994, 168, 159-162.	2.1	9
38	GABAA receptor agonist muscimol can reset the phase of neural activity rhythm in the rat suprachiasmatic nucleus in vitro. Neuroscience Letters, 1994, 166, 81-84.	2.1	50
39	Facilitation of 2-deoxyglucose uptake in rat cortex and hippocampus slices by somatostatin in i	3.5	9
40	Excitatory effect of and kainate receptor on the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus in vitro. Neuroscience Letters, 1992, 139, 83-86.	2.1	27
41	Phase-resetting efect of 8-OH-DPAT, a serotonin1A receptor agonist, on the circadian rhythm of firing rate in the rat suprachiasmatic nuclei in vitro. Brain Research, 1992, 582, 353-356.	2.2	107
42	An in vitro circadian rhythm of protein synthesis in the rat suprachiasmatic nucleus under tissue culture conditions. Brain Research, 1992, 584, 251-256.	2.2	13
43	Effect of substance P on circadian rhythms of firing activity and the 2-deoxyglucose uptake in the rat suprachiasmatic nucleus in vitro. Brain Research, 1992, 597, 257-263.	2.2	69