## Mariusz Radon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3306243/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structure and mechanistic relevance of Ni2+–NO adduct in model HC SCR reaction over NiZSM-5<br>catalyst – Insights from standard and correlation EPR and IR spectroscopic studies corroborated by<br>molecular modeling. Journal of Catalysis, 2021, 394, 206-219.                         | 6.2 | 14        |
| 2  | Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data?. Physical Chemistry Chemical Physics, 2021, 23, 151-172.                                                                                        | 2.8 | 22        |
| 3  | Zeolites at the Molecular Level: What Can Be Learned from Molecular Modeling. Molecules, 2021, 26, 1511.                                                                                                                                                                                   | 3.8 | 6         |
| 4  | Experimental and Computational Insight into the Mechanism of NO Binding to Ferric Microperoxidase.<br>The Likely Role of Tautomerization to Account for the pH Dependence. Inorganic Chemistry, 2021, 60,<br>15948-15967.                                                                  | 4.0 | 4         |
| 5  | Heptacoordinated W(IV) Cyanido Supramolecular Complex Trapped by Photolysis of a<br>[W(CN)6(bpy)]2–/Zn2+ System. Crystal Growth and Design, 2020, 20, 7742-7749.                                                                                                                           | 3.0 | 1         |
| 6  | Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Physical Chemistry Chemical Physics, 2019, 21, 4854-4870.                                                                                                       | 2.8 | 99        |
| 7  | Toward accurate spin-state energetics of transition metal complexes. Advances in Inorganic Chemistry, 2019, , 221-264.                                                                                                                                                                     | 1.0 | 10        |
| 8  | Electronic Properties of Iron Sites and Their Active Forms in Porphyrin-Type Architectures. Springer Series on Bio- and Neurosystems, 2019, , 755-823.                                                                                                                                     | 0.2 | 1         |
| 9  | Spin States and Other Ligand–Field States of Aqua Complexes Revisited with Multireference ab Initio<br>Calculations Including Solvation Effects. Journal of Chemical Theory and Computation, 2018, 14,<br>4010-4027.                                                                       | 5.3 | 26        |
| 10 | The dependence on ammonia pretreatment of Nâ^'O activation by Co(II) sites in zeolites: a DFT and ab initio molecular dynamics study. Journal of Molecular Modeling, 2017, 23, 160.                                                                                                        | 1.8 | 6         |
| 11 | Spin-State Energetics of Fe(III) and Ru(III) Aqua Complexes: Accurate ab Initio Calculations and Evidence for Huge Solvation Effects. Journal of Chemical Theory and Computation, 2016, 12, 1592-1605.                                                                                     | 5.3 | 38        |
| 12 | Mechanism of O <sub>2</sub> Activation by α-Ketoglutarate Dependent Oxygenases Revisited. A Quantum<br>Chemical Study. Journal of Physical Chemistry A, 2016, 120, 1261-1274.                                                                                                              | 2.5 | 65        |
| 13 | Ammonia-modified Co( <scp>ii</scp> ) sites in zeolites: spin and electron density redistribution through the Co <sup>II</sup> –NO bond. Physical Chemistry Chemical Physics, 2016, 18, 3716-3729.                                                                                          | 2.8 | 16        |
| 14 | Role of Spin States in Nitric Oxide Binding to Cobalt(II) and Manganese(II) Porphyrins. Is Tighter<br>Binding Always Stronger?. Inorganic Chemistry, 2015, 54, 5634-5645.                                                                                                                  | 4.0 | 24        |
| 15 | How can [Mo <sup>IV</sup> (CN) <sub>6</sub> ] <sup>2â^'</sup> , an apparently octahedral<br>(d) <sup>2</sup> complex, be diamagnetic? Insights from quantum chemical calculations and magnetic<br>susceptibility measurements. Physical Chemistry Chemical Physics, 2015, 17, 14890-14902. | 2.8 | 12        |
| 16 | The effect of Câ^'H···O bonding and Cl···π interactions in electrocatalytic dehalogenation of C2<br>chlorides containing an acidic hydrogen. Electrochimica Acta, 2014, 140, 497-504.                                                                                                      | 5.2 | 7         |
| 17 | Mixed-valence VIV/VV tetrametallate core {V4N2O14} cluster containing<br>tris(hydroxymethyl)aminomethane and acetylacetone. Inorganic Chemistry Communication, 2014, 41,<br>72-75.                                                                                                         | 3.9 | 17        |
| 18 | Nitric oxide as a non-innocent ligand in (bio-)inorganic complexes: Spin and electron transfer in FellNO bond. Journal of Inorganic Biochemistry, 2014, 136, 147-153.                                                                                                                      | 3.5 | 13        |

Mariusz Radon

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mo(IV) and W(IV) cyanido complexes with Schiff bases. Synthesis, X-ray single crystal structures, physicochemical properties and quantum chemical calculations. Polyhedron, 2014, 68, 112-121.                                        | 2.2  | 3         |
| 20 | Revisiting the role of exact exchange in DFT spin-state energetics of transition metal complexes.<br>Physical Chemistry Chemical Physics, 2014, 16, 14479-14488.                                                                      | 2.8  | 68        |
| 21 | Ammonia-modified Co( <scp>ii</scp> ) sites in zeolites: IR spectroscopy and spin-resolved charge<br>transfer analysis of NO adsorption complexes. Physical Chemistry Chemical Physics, 2014, 16,<br>24089-24098.                      | 2.8  | 4         |
| 22 | Spin-State Energetics of Heme-Related Models from DFT and Coupled Cluster Calculations. Journal of Chemical Theory and Computation, 2014, 10, 2306-2321.                                                                              | 5.3  | 93        |
| 23 | Electronic Properties of Iron Sites and Their Active Forms in Porphyrin-Type Architectures. Springer Series in Bio-/neuroinformatics, 2014, , 711-782.                                                                                | 0.1  | 0         |
| 24 | On the role of noncovalent interactions in electrocatalysis. Two cases of mediated reductive dehalogenation. Electrochimica Acta, 2013, 110, 619-627.                                                                                 | 5.2  | 9         |
| 25 | Electronic propensity of Cu(II) versus Cu(I) sites in zeolites to activate NO — Spin- and orbital-resolved<br>Cu–NO electron transfer. Canadian Journal of Chemistry, 2013, 91, 538-543.                                              | 1.1  | 9         |
| 26 | Autocatalytic cathodic dehalogenation triggered by dissociative electron transfer through a C–Hâ∢O<br>hydrogen bond. Physical Chemistry Chemical Physics, 2013, 15, 17522.                                                            | 2.8  | 9         |
| 27 | On the nature of spin- and orbital-resolved Cu+–NO charge transfer in the gas phase and at Cu(I) sites in zeolites. Structural Chemistry, 2012, 23, 1349-1356.                                                                        | 2.0  | 15        |
| 28 | DFT and Ab Initio Study of Iron-Oxo Porphyrins: May They Have a Low-Lying Iron(V)-Oxo Electromer?.<br>Journal of Chemical Theory and Computation, 2011, 7, 898-908.                                                                   | 5.3  | 71        |
| 29 | Mono- and Dinitrosyls on Copper(I) Site in a Zeolite Model: Effects of Static Correlation. Journal of<br>Physical Chemistry A, 2011, 115, 11761-11774.                                                                                | 2.5  | 12        |
| 30 | Spin Ground State and Magnetic Properties of Cobalt(II): Relativistic DFT Calculations Guided by EPR<br>Measurements of Bis(2,4-acetylacetonate)cobalt(II)-Based Complexes. Journal of Physical Chemistry A,<br>2011, 115, 2316-2324. | 2.5  | 36        |
| 31 | Electronic Structure of Selected {FeNO} <sup>7</sup> Complexes in Heme and Non-Heme<br>Architectures: A Density Functional and Multireference ab Initio Study. Journal of Physical Chemistry<br>B, 2010, 114, 1518-1528.              | 2.6  | 147       |
| 32 | Mechanism of Selective Halogenation by SyrB2: A Computational Study. Journal of the American Chemical Society, 2010, 132, 12887-12898.                                                                                                | 13.7 | 98        |
| 33 | Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models. Journal of Chemical Theory and Computation, 2010, 6, 576-582.                                                                                        | 5.3  | 147       |
| 34 | Conformational Stability and Spin States of Cobalt(II) Acetylacetonate: CASPT2 and DFT Study. Journal of Chemical Theory and Computation, 2009, 5, 1237-1244.                                                                         | 5.3  | 30        |
| 35 | On the properties of natural orbitals for chemical valence. Theoretical Chemistry Accounts, 2008, 120, 337-339.                                                                                                                       | 1.4  | 45        |
| 36 | Nitrogen Monoxide Interaction with Cu(I) Sites in Zeolites X and Y: Quantum Chemical Calculations and IR Studies. Journal of Physical Chemistry C, 2008, 112, 17998-18010.                                                            | 3.1  | 30        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Binding of CO, NO, and O <sub>2</sub> to Heme by Density Functional and Multireference ab Initio<br>Calculations. Journal of Physical Chemistry A, 2008, 112, 11824-11832. | 2.5 | 218       |
| 38 | Peculiarities of the Electronic Structure of Cytochrome P450 Compound I:  CASPT2 and DFT Modeling.<br>Journal of Chemical Theory and Computation, 2007, 3, 728-734.        | 5.3 | 36        |