Andrea Gallavotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305993/publications.pdf

Version: 2024-02-01

35 papers 4,402 citations

257450 24 h-index 377865 34 g-index

41 all docs

41 docs citations

41 times ranked

5184 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of temperature-regulated growth and thermotolerance in crop species. Current Opinion in Plant Biology, 2022, 65, 102134.	7.1	33
2	Auxin boosts energy generation pathways to fuel pollen maturation in barley. Current Biology, 2022, 32, 1798-1811.e8.	3.9	16
3	OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem. New Phytologist, 2021, 229, 429-443.	7. 3	21
4	The FUSED LEAVES1â€∢i>ADHERENT1 regulatory module is required for maize cuticle development and organ separation. New Phytologist, 2021, 229, 388-402.	7.3	17
5	Improving architectural traits of maize inflorescences. Molecular Breeding, 2021, 41, 1.	2.1	12
6	VviNAC33 promotes organ deâ€greening and represses vegetative growth during the vegetativeâ€toâ€mature phase transition in grapevine. New Phytologist, 2021, 231, 726-746.	7.3	16
7	Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nature Communications, 2021, 12, 2378.	12.8	28
8	A cis-regulatory atlas in maize at single-cell resolution. Cell, 2021, 184, 3041-3055.e21.	28.9	176
9	A Synthetic Approach Allows Rapid Characterization of the Maize Nuclear Auxin Response Circuit. Plant Physiology, 2020, 182, 1713-1722.	4.8	13
10	Mapping Regulatory Determinants in Plants. Frontiers in Genetics, 2020, 11, 591194.	2.3	15
11	<i>Necrotic upper tips1</i> mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20908-20919.	7.1	33
12	<i>NEEDLE1</i> encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19736-19742.	7.1	25
13	Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. Molecular Plant, 2019, 12, 298-320.	8.3	103
14	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	9.3	250
15	RAMOSA1 ENHANCER LOCUS2-Mediated Transcriptional Repression Regulates Vegetative and Reproductive Architecture. Plant Physiology, 2019, 179, 348-363.	4.8	41
16	The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nature Communications, 2018, 9, 4526.	12.8	146
17	The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions. Genetics, 2017, 206, 2041-2051.	2.9	25
18	Mapping genome-wide transcription-factor binding sites using DAP-seq. Nature Protocols, 2017, 12, 1659-1672.	12.0	330

#	Article	IF	Citations
19	Development of an informatics analytics workflow for DAP-seq data exploration and validation for auxin response factors in maize., 2017,,.		0
20	Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell, 2016, 165, 1280-1292.	28.9	1,078
21	Expanding the Regulatory Network for Meristem Size in Plants. Trends in Genetics, 2016, 32, 372-383.	6.7	54
22	Positional cloning in maize (<i>Zea mays</i> subsp. <i>mays</i> , Poaceae). Applications in Plant Sciences, 2015, 3, 1400092.	2.1	21
23	Auxin signaling modules regulate maize inflorescence architecture. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13372-13377.	7.1	135
24	Transport of Boron by the <i>tassel-less1 </i> Aquaporin Is Critical for Vegetative and Reproductive Development in Maize \hat{A} . Plant Cell, 2014, 26, 2978-2995.	6.6	113
25	The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility Â. Plant Cell, 2014, 26, 2962-2977.	6.6	91
26	The role of auxin in shaping shoot architecture. Journal of Experimental Botany, 2013, 64, 2593-2608.	4.8	154
27	BARREN STALK FASTIGIATE1 Is an AT-Hook Protein Required for the Formation of Maize Ears Â. Plant Cell, 2011, 23, 1756-1771.	6.6	84
28	The control of axillary meristem fate in the maize <i>ramosa</i> pathway. Development (Cambridge), 2010, 137, 2849-2856.	2.5	157
29	Studies of <i>aberrant phyllotaxy1</i> Mutants of Maize Indicate Complex Interactions between Auxin and Cytokinin Signaling in the Shoot Apical Meristem Â. Plant Physiology, 2009, 150, 205-216.	4.8	124
30	BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development. Plant and Cell Physiology, 2009, 50, 652-657.	3.1	67
31	<i>sparse inflorescence1</i> encodes a monocot-specific <i>YUCCA</i> -like gene required for vegetative and reproductive development in maize. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15196-15201.	7.1	242
32	The Relationship between Auxin Transport and Maize Branching Â. Plant Physiology, 2008, 147, 1913-1923.	4.8	188
33	Two sides of the same coin. Nature Genetics, 2007, 39, 1425-1426.	21.4	0
34	A novel class of Helitron- related transposable elements in maize contain portions of multiple pseudogenes. Plant Molecular Biology, 2005, 57, 115-127.	3.9	87
35	The role of barren stalk1 in the architecture of maize. Nature, 2004, 432, 630-635.	27.8	311