Micah Green

List of Publications by Citations

Source: https://exaly.com/author-pdf/330593/micah-green-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 156
 6,317
 41
 76

 papers
 citations
 h-index
 g-index

 164
 7,636
 7.3
 6.08

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
156	Spontaneous high-concentration dispersions and liquid crystals of graphene. <i>Nature Nanotechnology</i> , 2010 , 5, 406-11	28.7	488
155	True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. <i>Nature Nanotechnology</i> , 2009 , 4, 830-4	28.7	417
154	Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano, 2012, 6, 8857	- 6 7.7	291
153	Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. <i>Carbon</i> , 2012 , 50, 526-534	10.4	233
152	Carbon nanotube-based neat fibers. <i>Nano Today</i> , 2008 , 3, 24-34	17.9	227
151	Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions. <i>Matter</i> , 2019 , 1, 513-526	12.7	210
150	Template-free 3D titanium carbide (TiCT) MXene particles crumpled by capillary forces. <i>Chemical Communications</i> , 2016 , 53, 400-403	5.8	195
149	Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21663-21668	13	186
148	Nanotubes as polymers. <i>Polymer</i> , 2009 , 50, 4979-4997	3.9	170
147	Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	162
146	Surface-agnostic highly stretchable and bendable conductive MXene multilayers. <i>Science Advances</i> , 2018 , 4, eaaq0118	14.3	157
145	Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating. <i>Science Advances</i> , 2017 , 3, e1700262	14.3	149
144	Interaction of carbon nanohorns with plants: Uptake and biological effects. <i>Carbon</i> , 2015 , 81, 607-619	10.4	145
143	High-Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical Properties. <i>Macromolecular Materials and Engineering</i> , 2013 , 298, 339-347	3.9	130
142	An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. <i>Journal of Hazardous Materials</i> , 2013 , 261, 188-97	12.8	116
141	Rheology and morphology of pristine graphene/polyacrylamide gels. <i>ACS Applied Materials & Interfaces</i> , 2013 , 5, 8633-40	9.5	108
140	Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano, 2010 , 4, 396	59 . 7. 8	108

(2020-2019)

139	Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. <i>ACS Applied Nano Materials</i> , 2019 , 2, 948-955	5.6	99
138	Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene. <i>Advanced Materials</i> , 2016 , 28, 8796-8818	24	97
137	Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. <i>ACS Applied Materials & District Applied & Di</i>	9.5	94
136	Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. <i>Polymer</i> , 2012 , 53, 2485-2494	3.9	92
135	High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. <i>Scientific Reports</i> , 2018 , 8, 14525	4.9	91
134	Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO) to earthworms (Eisenia fetida). <i>Journal of Environmental Monitoring</i> , 2011 , 13, 3351-7		73
133	Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11599-604	11.5	73
132	Tailored Crumpling and Unfolding of Spray-Dried Pristine Graphene and Graphene Oxide Sheets. <i>Small</i> , 2015 , 11, 2661-8	11	70
131	Detection of carbon nanotubes in biological samples through microwave-induced heating. <i>Carbon</i> , 2012 , 50, 4441-4449	10.4	66
130	Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. <i>PLoS ONE</i> , 2018 , 13, e0202274	3.7	65
129	Liquid phase exfoliation and crumpling of inorganic nanosheets. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 9383-93	3.6	60
128	Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano, 2010, 4, 3063-72	16.7	60
127	Analysis and measurement of carbon nanotube dispersions: nanodispersion versus macrodispersion. <i>Polymer International</i> , 2010 , 59, 1319-1322	3.3	57
126	Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. <i>Journal of Chemical Physics</i> , 2009 , 131, 084901	3.9	56
125	Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. <i>Environmental Pollution</i> , 2020 , 259, 113937	9.3	56
124	Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. <i>Journal of Nanobiotechnology</i> , 2016 , 14, 40	9.4	53
123	Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique. <i>Science of the Total Environment</i> , 2013 , 445-446, 9-13	10.2	51
122	Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. <i>Science of the Total Environment</i> , 2020 , 715, 136974	10.2	47

121	Relationship of Extensional Viscosity and Liquid Crystalline Transition to Length Distribution in Carbon Nanotube Solutions. <i>Macromolecules</i> , 2016 , 49, 681-689	5.5	46
120	Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 96, 168-74	7	46
119	Highly Multifunctional Dopamine-Functionalized Reduced Graphene Oxide Supercapacitors. <i>Matter</i> , 2019 , 1, 1532-1546	12.7	45
118	Direct exfoliation of graphene in ionic liquids with aromatic groups. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2014 , 463, 63-69	5.1	45
117	Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 4040-4046	2.9	44
116	Process Safety Analysis for Ti3C2Tx MXene Synthesis and Processing. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1570-1579	3.9	44
115	Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants. <i>ACS Applied Materials & Dramatically Affect</i> , 9, 32430-32435	9.5	41
114	Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites. <i>Carbon</i> , 2017 , 120, 447-453	10.4	39
113	Radio Frequency Heating of Carbon Nanotube Composite Materials. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2018 , 10, 27252-27259	9.5	38
112	Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 30797-30804	9.5	35
111	Performance enhancement of dye-sensitized solar cells by incorporating graphene sheets of various sizes. <i>Applied Surface Science</i> , 2014 , 314, 638-641	6.7	34
110	Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 1130-6	4.3	33
109	Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. <i>Chemosphere</i> , 2016 , 152, 117-22	8.4	33
108	Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer. <i>Advanced Functional Materials</i> , 2016 , 26, 2143-2149	15.6	31
107	pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti3C2Tx and Ti2CTx MXene Dispersions. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000845	4.6	31
106	ReaxFF Simulations of Laser-Induced Graphene (LIG) Formation for Multifunctional Polymer Nanocomposites. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1881-1890	5.6	30
105	Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2199-2204	3.8	28
104	Comparative studies of multi-walled carbon nanotubes (MWNTs) and octadecyl (C18) as sorbents in passive sampling devices for biomimetic uptake of polycyclic aromatic hydrocarbons (PAHs) from soils. <i>Science of the Total Environment</i> , 2013 , 461-462, 560-7	10.2	27

(2016-2020)

Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. <i>Chemosphere</i> , 2020 , 256, 127042	8.4	27	
Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. Journal of Colloid and Interface Science, 2020 , 560, 581-588	9.3	27	
Ultralow percolation threshold in aerogel and cryogel templated composites. <i>Langmuir</i> , 2013 , 29, 114	49 ₂ 56	26	
Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. <i>Combustion and Flame</i> , 2015 , 162, 1417-1421	5.3	24	
Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. <i>Scientific Reports</i> , 2019 , 9, 19358	4.9	24	
A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12474-12482	13	23	
Heating of TiCT MXene/polymer composites in response to Radio Frequency fields. <i>Scientific Reports</i> , 2019 , 9, 16489	4.9	23	
Adsorption and removal of graphene dispersants. <i>Journal of Colloid and Interface Science</i> , 2015 , 446, 282-9	9.3	23	
Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible Supercapacitors. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 14068-14076	9.5	23	
New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. <i>Soft Matter</i> , 2017 , 13, 8451-8462	3.6	21	
Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. <i>ACS Applied Materials & Description of Materials & Description of</i>	9.5	20	
Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing Preceramic Polymer Composites. <i>ACS Applied Materials & District Research</i> , 11, 46132-46139	9.5	19	
pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 366-375	4.6	18	
Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7032-7042	5.6	17	
Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. <i>Nanoscale</i> , 2019 , 11, 9617-9625	7.7	16	
In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics. <i>Science of the Total Environment</i> , 2020 , 735, 139461	10.2	16	
Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system. <i>Applied Mathematical Modelling</i> , 2017 , 46, 116-125	4.5	15	
Cosolvents as Liquid Surfactants for Boron Nitride Nanosheet (BNNS) Dispersions. <i>Langmuir</i> , 2016 , 32, 11591-11599	4	15	
	Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. Journal of Colloid and Interface Science, 2020, 560, 581-588 Ultralow percolation threshold in aerogel and cryogel templated composites. Langmuir, 2013, 29, 114 Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combustion and Flame, 2015, 162, 1417-1421 Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. Scientific Reports, 2019, 9, 19358 A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. Journal of Materials Chemistry A, 2017, 5, 12474-12482 Heating of TICT MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489 Adsorption and removal of graphene dispersants. Journal of Colloid and Interface Science, 2015, 446, 282-9 Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible Supercapacitors. ACS Applied Materials & Bamp; Interfaces, 2021, 13, 14068-14076 New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter, 2017, 13, 8451-8462 Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. ACS Applied Materials & Bamp; Interfaces, 2019, 11, 47329-47938 Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing Preceramic Polymer Composites. ACS Applied Materials & Bamp; Interfaces, 2019, 11, 46132-46139 pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. Molecular Systems Design and Engineering, 2020, 5, 366-375 Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. ACS Applied Nano Materials, 2019, 2, 7032-7042 Radio Frequency heating of metallic and semiconducting single-wal	Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. Journal of Colloid and Interface Science, 2020, 560, 581-588 Ultralow percolation threshold in aerogel and cryogel templated composites. Langmuir, 2013, 29, 11449-66 Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combustion and Flame, 2015, 162, 1417-1421 Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Asmonanterials. Scientific Reports, 2019, 9, 19358 49 A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. Journal of Materials Chemistry A, 2017, 5, 12474-12482 13 Heating of TiCT MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489 Adsorption and removal of graphene dispersants. Journal of Colloid and Interface Science, 2015, 446, 282-9 Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible Supercapacitors. ACS Applied Materials Ramp; Interfaces, 2021, 13, 14068-14076 New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter, 2017, 13, 8451-8462 Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. ACS Applied Materials Ramp; Interfaces, 2019, 11, 46132-46139 Ph-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. Molecular Systems Design and Engineering, 2020, 5, 366-375 Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. ACS Applied Nano Materials, 2019, 2, 7032-7042 Radio Frequency Heating of metallic and semiconducting single-walled carbon nanotubes. Nanoscale, 2019, 11, 9617-9625 In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polyst	Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. Journal of Colloid and Interface Science, 2020, 560, 581-588 Ultralow percolation threshold in aerogel and cryogel templated composites. Langmuir, 2013, 29, 11449-\$6 26 Ignition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combustion and Flame, 2015, 162, 1417-1421 Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. Scientific Reports, 2019, 9, 19358 A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. Journal of Materials Chemistry A, 2017, 5, 12474-12482 13 23 Heating of TiCT MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489 Adsorption and removal of graphene dispersants. Journal of Colloid and Interface Science, 2015, 445, 282-9 Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible Supercapacitors. ACS Applied Materials Ramp; Interfaces, 2021, 13, 14068-14076 New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Materia, 2017, 13, 8451-8462 Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. ACS Applied Materials Ramp; Interfaces, 2019, 11, 147929-47938 95 20 Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing Preceramic Polymer Composites. ACS Applied Materials Ramp; Interfaces, 2019, 11, 46132-46139 95 19 pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors. Molecular Systems Design and Engineering, 2020, 5, 366-375 Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. ACS Applied Man Materials, 2019, 2, 7032-7042 Radio Frequency Heating of metallic and semiconducti

85	Synthesizing MXene Nanosheets by Water-free Etching. <i>CheM</i> , 2020 , 6, 544-546	16.2	14
84	Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. <i>AICHE Journal</i> , 2014 , 60, 1499-1508	3.6	14
83	Wire Melt Electrospinning of Thin Polymeric Fibers via Strong Electrostatic Field Gradients. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1800417	3.9	14
82	Radio Frequency and Microwave Heating of Preceramic Polymer Nanocomposites with Applications in Mold-Free Processing. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900276	3.5	13
81	Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks. <i>Nanoscale</i> , 2014 , 6, 11722-31	7.7	13
80	Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. <i>Journal of Microscopy</i> , 2015 , 259, 16-25	1.9	13
79	A Novel Approach for Melt Electrospinning of Polymer Fibers. <i>Procedia Manufacturing</i> , 2018 , 26, 205-20	08 1.5	13
78	Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites. <i>Polymer</i> , 2015 , 56, 476-481	3.9	12
77	Continuous processing of pre-pregs using radio frequency heating. <i>Composites Science and Technology</i> , 2020 , 195, 108211	8.6	12
76	Trophic Transfer and Accumulation of Multiwalled Carbon Nanotubes in the Presence of Copper Ions in Daphnia magna and Fathead Minnow (Pimephales promelas). <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 794-800	10.3	11
75	Modeling of downstream heating in melt electrospinning of polymers. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2017 , 55, 1393-1405	2.6	11
74	Brownian dynamics simulations of nanosheet solutions under shear. <i>Journal of Chemical Physics</i> , 2014 , 141, 024905	3.9	11
73	Annealed Ti3C2Tz MXene Films for Oxidation-Resistant Functional Coatings. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10578-10585	5.6	11
72	Orientation Relaxation Dynamics in Cellulose Nanocrystal Dispersions in the Chiral Liquid Crystalline Phase. <i>Langmuir</i> , 2018 , 34, 13274-13282	4	11
71	High-throughput screening of printed carbon nanotube circuits using radio frequency heating. <i>Carbon</i> , 2019 , 152, 444-450	10.4	10
70	Tunable dispersibility and wettability of graphene oxide through one-pot functionalization and reduction. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 771-780	9.3	10
69	Tailored Network Formation in Graphene Oxide Gels. <i>Langmuir</i> , 2018 , 34, 8550-8559	4	10
68	Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. <i>ACS Nano</i> , 2019 , 13, 8957-8969	16.7	10

67	Direct imaging of carbon nanotubes spontaneously filled with solvent. <i>Chemical Communications</i> , 2011 , 47, 1228-30	5.8	10
66	Local heating and curing of carbon nanocomposite adhesives using radio frequencies. <i>Journal of Manufacturing Processes</i> , 2020 , 58, 436-442	5	10
65	Distinguishing Self-Assembled Pyrene Structures from Exfoliated Graphene. <i>Langmuir</i> , 2016 , 32, 1069	9-140704	10
64	Structural reduced graphene oxide supercapacitors mechanically enhanced with tannic acid. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2301-2308	5.8	9
63	Gradient Films of Pristine Graphene/Pyrene-Functional Copolymers with Janus Electrical Properties. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	9
62	Radio frequency heating and reduction of Graphene Oxide and Graphene Oxide - Polyvinyl Alcohol Composites. <i>Carbon</i> , 2020 , 169, 475-481	10.4	9
61	One-step hydrothermal synthesis of porous TiCT MXene/rGO gels for supercapacitor applications. <i>Nanoscale</i> , 2021 , 13, 16543-16553	7.7	9
60	Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene Oxide/Aramid Nanofiber Electrodes for Supercapacitors. <i>ACS Nano</i> , 2020 , 14, 5314-5323	16.7	8
59	Electrical current stimulated desorption of carbon dioxide adsorbed on graphene based structures. <i>RSC Advances</i> , 2016 , 6, 43401-43407	3.7	8
58	Lightweight Kevlar-Reinforced Graphene Oxide Architectures with High Strength for Energy Storage. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900786	4.6	8
57	Graphene non-covalently tethered with magnetic nanoparticles. <i>Carbon</i> , 2014 , 72, 192-199	10.4	8
56	Minimizing two-dimensional TiCT MXene nanosheet loading in carbon-free silicon anodes. <i>Nanoscale</i> , 2020 , 12, 20699-20709	7.7	8
55	Ultrafast and Highly Localized Microwave Heating in Carbon Nanotube Multilayer Thin Films. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700371	4.6	7
54	Graphene Oxide Synthesis: Reaction Calorimetry and Safety. <i>Industrial & Discourse Industrial & Discourse Industri</i>	3.9	7
53	Effect of pseudomonas lipase enzyme on the degradation of polycaprolactone/polycaprolactone-polyglycolide fiber blended nanocomposites. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2019 , 68, 360-367	3	7
52	Brownian dynamics simulation of two-dimensional nanosheets under biaxial extensional flow. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 1247-1253	2.6	7
51	Computation of the nonhomogeneous equilibrium states of a rigid-rod solution. <i>Journal of Chemical Physics</i> , 2006 , 125, 214906	3.9	7
50	Joule heating of carbon pixels for on-demand thermal patterning. <i>Carbon</i> , 2021 , 174, 518-523	10.4	7

49	Oxidative Stability of Nbn+1CnTz MXenes. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 13990-13996	3.8	7
48	Calorimetry of explosive thermal decomposition of graphite oxide. <i>Journal of Hazardous Materials</i> , 2019 , 366, 275-281	12.8	7
47	Dielectric Barrier Discharge Applicator for Heating Carbon Nanotube-Loaded Interfaces and Enhancing 3D-Printed Bond Strength. <i>Nano Letters</i> , 2020 , 20, 2310-2315	11.5	6
46	Dynamics of chiral liquid crystals under applied shear. <i>Liquid Crystals</i> , 2013 , 40, 846-853	2.3	6
45	Rheological phase diagrams for nonhomogeneous flows of rodlike liquid crystalline polymers. Journal of Non-Newtonian Fluid Mechanics, 2009 , 157, 34-43	2.7	6
44	Nonhomogeneous shear flow in concentrated liquid-crystalline solutions. <i>Physics of Fluids</i> , 2007 , 19, 11	17,0,2	6
43	Scalable Production of Graphene Nanoplatelets for Energy Storage. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10303-10309	5.6	6
42	Radio Frequency Driven Heating of Catalytic Reactors for Portable Green Chemistry. <i>Advanced Sustainable Systems</i> , 2020 , 4, 2000095	5.9	6
41	Universal patterns of radio-frequency heating in nanomaterial-loaded structures. <i>Applied Materials Today</i> , 2021 , 23, 101044	6.6	6
40	The effect of bending stiffness on scaling laws for the size of colloidal nanosheets. <i>Nanotechnology</i> , 2016 , 27, 235702	3.4	6
39	Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with Chemically Diverse MXenes. <i>Langmuir</i> , 2021 , 37, 11338-11350	4	6
38	Photodegradation of dispersants in colloidal suspensions of pristine graphene. <i>Journal of Colloid and Interface Science</i> , 2016 , 466, 425-31	9.3	5
37	Initial stage of spinodal decomposition in a rigid-rod system. <i>Journal of Chemical Physics</i> , 2007 , 126, 034	903	5
36	Site-Specific Selective Bending of Actuators using Radio Frequency Heating. <i>Advanced Engineering Materials</i> , 2021 , 23, 2000873	3.5	5
35	Spray-On Reduced Graphene Oxide-Poly(vinyl alcohol) Supercapacitors for Flexible Energy and Power. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801237	4.6	5
34	IsotropicElematic phase separation and demixing in mixtures of spherical nanoparticles with length-polydisperse nanorods. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1321-1327	2.6	4
33	Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. <i>IScience</i> , 2021 , 24, 103403	6.1	4
32	Chiral Structure Formation during Casting of Cellulose Nanocrystalline Films. <i>Langmuir</i> , 2020 , 36, 4975-	49/84	4

(2020-2021)

31	Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation. <i>Langmuir</i> , 2021 , 37, 2649-2657	4	4	
30	Graphene reflux: improving the yield of liquid-exfoliated nanosheets through repeated separation techniques. <i>Nanotechnology</i> , 2016 , 27, 505601	3.4	3	
29	Melt Electrospinning Polyethylene Fibers in Inert Atmosphere. <i>Macromolecular Materials and Engineering</i> , 2020 , 305, 2000106	3.9	3	
28	Kinetics of carbon nanotube-loaded epoxy curing: Rheometry, differential scanning calorimetry, and radio frequency heating. <i>Carbon</i> , 2021 , 175, 1-10	10.4	3	
27	Detection and quantification of free carbon nanotubes in abraded polymer nanocomposites using UVII is spectroscopy. <i>NanoImpact</i> , 2019 , 16, 100190	5.6	3	
26	Radio frequency heating and material processing using carbon susceptors. <i>Nanoscale Advances</i> , 2021 , 3, 5255-5264	5.1	3	
25	Theoretical analysis of the stabilization of graphene nanosheets by means of strongly polarized pyrene derivatives. <i>Chemical Physics</i> , 2019 , 527, 110468	2.3	2	
24	Wire Melt Electrospun Polymer Nanocomposite Fibers as Radio Frequency Responsive Heaters. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 2751-2759	4.3	2	
23	Rapid Manufacturing via Selective Radio-Frequency Heating and Curing of Thermosetting Resins. <i>Advanced Engineering Materials</i> ,2101351	3.5	2	
22	Synthesis and Electronic Applications of Particle-Templated TiCT MXene-Polymer Films via Pickering Emulsion Polymerization. <i>ACS Applied Materials & Emplied Materials & Pickering Emulsion Polymerization</i> (12) 13, 51556-51566	9.5	2	
21	Carbon Additive-Free Crumpled Ti3C2TX MXene-Encapsulated Silicon Nanoparticle Anodes for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 10762-10773	6.1	2	
20	Highly selective laser-induced graphene (LIG)/polysulfone composite membrane for hydrogen purification. <i>Applied Materials Today</i> , 2021 , 22, 100971	6.6	2	
19	High-density polyethylene reinforced by low loadings of electrochemically exfoliated graphene via melt recirculation approach. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50448	2.9	2	
18	Interparticle interactions and rheological signatures of TiCT MXene dispersions. <i>Journal of Colloid and Interface Science</i> , 2022 , 605, 120-128	9.3	2	
17	Non-destructive technique for broadband characterization of carbon nanotubes at microwave frequencies. <i>Journal of Electromagnetic Waves and Applications</i> , 2013 , 27, 1372-1381	1.3	1	
16	Spinodal decomposition and nematic coarsening in a rigid-rod solution. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2009 , 161, 30-36	2.7	1	
15	High-shear treatment of single-walled carbon nanotube Superacid solutions as a pre-processing technique for the assembly of fibres and films. <i>Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems</i> , 2008 , 222, 101-109		1	
14	Mechanics of nanoscale crumpled graphene measured by Atomic Force Microscopy. <i>Extreme Mechanics Letters</i> , 2020 , 40, 100873	3.9	1	

13	Radio Frequency Heating Response of Polyacrylonitrile (PAN) Films and Nanofiber Mats. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3125-3130	4.3	1
12	Using Radio-Frequency Fields for Local Heating and Curing of Adhesive for Bonding Metals. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100210	3.5	1
11	Radio Frequency Dielectric Characterization and Processing of Polymers Containing Nanomaterial Susceptors 2019 ,		1
10	Water-Dispersible Ti 3C 2T z MXene Nanosheets by Acid-Free, Molten Salt Etching. <i>SSRN Electronic Journal</i> ,	1	1
9	Radio frequency heating of PEDOT:PSS. <i>Polymer</i> , 2021 , 230, 124077	3.9	1
8	Controlling and Characterizing Anisotropic Nanomaterial Dispersion 2017, 65-99		1
7	Rapid Synthesis of Patterned Silicon Carbide Coatings Using Laser-Induced Pyrolysis and Crystallization of Polycarbosilane. <i>Advanced Engineering Materials</i> ,2101383	3.5	О
6	Graphene signatures: Identifying graphite and graphene grades via radio frequency heating. <i>Carbon</i> , 2021 , 182, 564-570	10.4	O
5	Anion Identity and Time Scale Affect the Cation Insertion Energy Storage Mechanism in Ti3C2Tx MXene Multilayers. <i>ACS Energy Letters</i> , 2022 , 7, 1828-1834	20.1	О
4	Energy Conversion: Radio Frequency Driven Heating of Catalytic Reactors for Portable Green Chemistry (Adv. Sustainable Syst. 11/2020). <i>Advanced Sustainable Systems</i> , 2020 , 4, 2070024	5.9	
3	In-Situ Temperature-Dependent Dielectric Characterization of Nanocomposites Heated with RF Energy. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2021 , 1-1	5.2	
2	Mechanical and Barrier Properties of Bromo B utyl Elastomers Filled with Electrochemically Exfoliated Graphene. <i>Macromolecular Materials and Engineering</i> , 2021 , 306, 2100153	3.9	_
1	Safer carbon nanotube processing expands industrial and consumer applications <i>Science Advances</i> , 2022 , 8, eabq4853	14.3	