
## Micah Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330593/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spontaneous high-concentration dispersions and liquid crystals of graphene. Nature<br>Nanotechnology, 2010, 5, 406-411.                                                                               | 15.6 | 532       |
| 2  | True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nature<br>Nanotechnology, 2009, 4, 830-834.                                                                 | 15.6 | 486       |
| 3  | Electrochemical etching of Ti <sub>2</sub> AlC to Ti <sub>2</sub> CT <sub>x</sub> (MXene) in<br>low-concentration hydrochloric acid solution. Journal of Materials Chemistry A, 2017, 5, 21663-21668. | 5.2  | 445       |
| 4  | Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions. Matter, 2019, 1, 513-526.                                                                                                      | 5.0  | 436       |
| 5  | Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano, 2012, 6, 8857-8867.                                                                                          | 7.3  | 330       |
| 6  | Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Materials and Applications, 2019, 3, .                                                                        | 3.9  | 312       |
| 7  | Template-free 3D titanium carbide (Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> ) MXene particles crumpled by capillary forces. Chemical Communications, 2017, 53, 400-403.                          | 2.2  | 271       |
| 8  | Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 2012, 50, 526-534.                                                               | 5.4  | 262       |
| 9  | Carbon nanotube-based neat fibers. Nano Today, 2008, 3, 24-34.                                                                                                                                        | 6.2  | 255       |
| 10 | Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.                                                                                   | 4.7  | 229       |
| 11 | Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating.<br>Science Advances, 2017, 3, e1700262.                                                                | 4.7  | 214       |
| 12 | Interaction of carbon nanohorns with plants: Uptake and biological effects. Carbon, 2015, 81, 607-619.                                                                                                | 5.4  | 196       |
| 13 | Nanotubes as polymers. Polymer, 2009, 50, 4979-4997.                                                                                                                                                  | 1.8  | 182       |
| 14 | Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Applied<br>Nano Materials, 2019, 2, 948-955.                                                                  | 2.4  | 173       |
| 15 | Highâ€Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical<br>Properties. Macromolecular Materials and Engineering, 2013, 298, 339-347.                             | 1.7  | 156       |
| 16 | High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports, 2018, 8, 14525.                                                     | 1.6  | 146       |
| 17 | An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. Journal of Hazardous Materials, 2013, 261, 188-197.                                | 6.5  | 137       |
| 18 | Spontaneous Dissolution of Ultralong Single- and Multiwalled Carbon Nanotubes. ACS Nano, 2010, 4,<br>3969-3978.                                                                                       | 7.3  | 124       |

| #  | Article                                                                                                                                                                                                                                        | IF              | CITATIONS   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| 19 | Challenges in Liquidâ€Phase Exfoliation, Processing, and Assembly of Pristine Graphene. Advanced<br>Materials, 2016, 28, 8796-8818.                                                                                                            | 11.1            | 123         |
| 20 | Rheology and Morphology of Pristine Graphene/Polyacrylamide Gels. ACS Applied Materials &<br>Interfaces, 2013, 5, 8633-8640.                                                                                                                   | 4.0             | 120         |
| 21 | Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. Environmental Pollution, 2020, 259, 113937.                                                                | 3.7             | 115         |
| 22 | Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE, 2018, 13, e0202274.                                                                                     | 1.1             | 106         |
| 23 | Localized In situ Polymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS<br>Applied Materials & Interfaces, 2011, 3, 1844-1851.                                                                                          | 4.0             | 104         |
| 24 | Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. Science of the Total Environment, 2020, 715, 136974.                                                                                                  | 3.9             | 103         |
| 25 | Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly (vinyl alcohol) composites. Polymer, 2012, 53, 2485-2494.                                                                     | 1.8             | 101         |
| 26 | pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of<br>Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> and Ti <sub>2</sub> CT <i><sub>x</sub></i> MXene<br>Dispersions. Advanced Materials Interfaces, 2020, 7, 2000845. | 1.9             | 99          |
| 27 | Process Safety Analysis for Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Synthesis and<br>Processing. Industrial & Engineering Chemistry Research, 2019, 58, 1570-1579.                                                          | 1.8             | 89          |
| 28 | Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11599-11604.                                             | 3.3             | 87          |
| 29 | Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia) Tj ETQq1 1                                                                                                                                   | 0.784314<br>2.1 | rgBT/Overlo |
| 30 | Tailored Crumpling and Unfolding of Sprayâ€Dried Pristine Graphene and Graphene Oxide Sheets. Small,<br>2015, 11, 2661-2668.                                                                                                                   | 5.2             | 78          |
| 31 | ReaxFF Simulations of Laser-Induced Graphene (LIG) Formation for Multifunctional Polymer<br>Nanocomposites. ACS Applied Nano Materials, 2020, 3, 1881-1890.                                                                                    | 2.4             | 76          |
| 32 | Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible<br>Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 14068-14076.                                                                 | 4.0             | 74          |
| 33 | Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon, 2012, 50, 4441-4449.                                                                                                                            | 5.4             | 71          |
| 34 | Liquid phase exfoliation and crumpling of inorganic nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 9383-9393.                                                                                                                      | 1.3             | 71          |
| 35 | Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. Journal of Chemical Physics, 2009, 131, 084901.                                         | 1.2             | 66          |
| 36 | Highly Multifunctional Dopamine-Functionalized Reduced Graphene Oxide Supercapacitors. Matter, 2019, 1, 1532-1546.                                                                                                                             | 5.0             | 66          |

| #  | Article                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Analysis and measurement of carbon nanotube dispersions: nanodispersion <i>versus</i> macrodispersion. Polymer International, 2010, 59, 1319-1322.                                                                       | 1.6 | 65        |
| 38 | Diameter-Dependent Solubility of Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 3063-3072.                                                                                                                           | 7.3 | 65        |
| 39 | Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of<br>Nanobiotechnology, 2016, 14, 40.                                                                                       | 4.2 | 64        |
| 40 | Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites. Carbon, 2017, 120, 447-453.                                                           | 5.4 | 61        |
| 41 | Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants.<br>ACS Applied Materials & Interfaces, 2017, 9, 32430-32435.                                                             | 4.0 | 61        |
| 42 | Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. IScience, 2021, 24, 103403.                                                                                                                           | 1.9 | 60        |
| 43 | Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique. Science of the Total Environment, 2013, 445-446, 9-13.                                    | 3.9 | 59        |
| 44 | Relationship of Extensional Viscosity and Liquid Crystalline Transition to Length Distribution in<br>Carbon Nanotube Solutions. Macromolecules, 2016, 49, 681-689.                                                       | 2.2 | 57        |
| 45 | Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes.<br>Ecotoxicology and Environmental Safety, 2013, 96, 168-174.                                                                  | 2.9 | 56        |
| 46 | Radio Frequency Heating of Carbon Nanotube Composite Materials. ACS Applied Materials &<br>Interfaces, 2018, 10, 27252-27259.                                                                                            | 4.0 | 52        |
| 47 | Direct exfoliation of graphene in ionic liquids with aromatic groups. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2014, 463, 63-69.                                                             | 2.3 | 51        |
| 48 | Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 2013, 128, 4040-4046.                                                                       | 1.3 | 49        |
| 49 | Annealed Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i></sub> MXene Films for Oxidation-Resistant<br>Functional Coatings. ACS Applied Nano Materials, 2020, 3, 10578-10585.                                              | 2.4 | 49        |
| 50 | Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based<br>Nanomaterials. Scientific Reports, 2019, 9, 19358.                                                                     | 1.6 | 46        |
| 51 | Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for<br>Photonic Crystal Applications. ACS Applied Materials & Interfaces, 2017, 9, 30797-30804.                                 | 4.0 | 42        |
| 52 | Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere, 2020, 256, 127042.                                                                                                        | 4.2 | 41        |
| 53 | Performance enhancement of dye-sensitized solar cells by incorporating graphene sheets of various sizes. Applied Surface Science, 2014, 314, 638-641.                                                                    | 3.1 | 39        |
| 54 | In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion<br>and intraperitoneal injection of polystyrene nanoplastics. Science of the Total Environment, 2020, 735,<br>139461. | 3.9 | 39        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bioaccumulation, stress, and swimming impairment in <i>Daphnia magna</i> exposed to multiwalled carbon nanotubes, graphene, and graphene oxide. Environmental Toxicology and Chemistry, 2017, 36, 2199-2204.                                                    | 2.2 | 38        |
| 56 | A temperature-responsive poly(vinyl alcohol) gel for controlling fluidity of an inorganic phase change material. Journal of Materials Chemistry A, 2017, 5, 12474-12482.                                                                                        | 5.2 | 38        |
| 57 | Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical<br>Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 47929-47938.                                                                              | 4.0 | 38        |
| 58 | Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes.<br>Journal of Colloid and Interface Science, 2020, 560, 581-588.                                                                                                | 5.0 | 38        |
| 59 | Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system. Environmental Sciences: Processes and Impacts, 2013, 15, 1130.                                                 | 1.7 | 37        |
| 60 | Determination of uptake, accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere, 2016, 152, 117-122.                                                                                        | 4.2 | 37        |
| 61 | Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogenâ€Bonding Layerâ€by‣ayer<br>Assembly of Graphene and Polymer. Advanced Functional Materials, 2016, 26, 2143-2149.                                                                          | 7.8 | 36        |
| 62 | One-step hydrothermal synthesis of porous Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i>/sub&gt;<br/>MXene/rGO gels for supercapacitor applications. Nanoscale, 2021, 13, 16543-16553.</sub>                                                                    | 2.8 | 36        |
| 63 | Comparative studies of multi-walled carbon nanotubes (MWNTs) and octadecyl (C18) as sorbents in passive sampling devices for biomimetic uptake of polycyclic aromatic hydrocarbons (PAHs) from soils. Science of the Total Environment, 2013, 461-462, 560-567. | 3.9 | 33        |
| 64 | Heating of Ti3C2Tx MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489.                                                                                                                                          | 1.6 | 32        |
| 65 | New insights into the flow and microstructural relaxation behavior of biphasic cellulose nanocrystal dispersions from RheoSANS. Soft Matter, 2017, 13, 8451-8462.                                                                                               | 1.2 | 30        |
| 66 | Synthesizing MXene Nanosheets by Water-free Etching. CheM, 2020, 6, 544-546.                                                                                                                                                                                    | 5.8 | 30        |
| 67 | Adsorption and removal of graphene dispersants. Journal of Colloid and Interface Science, 2015, 446, 282-289.                                                                                                                                                   | 5.0 | 29        |
| 68 | Rapid Heating of Silicon Carbide Fibers under Radio Frequency Fields and Application in Curing<br>Preceramic Polymer Composites. ACS Applied Materials & Interfaces, 2019, 11, 46132-46139.                                                                     | 4.0 | 29        |
| 69 | Ultralow Percolation Threshold in Aerogel and Cryogel Templated Composites. Langmuir, 2013, 29, 11449-11456.                                                                                                                                                    | 1.6 | 28        |
| 70 | lgnition sensitivity and electrical conductivity of an aluminum fluoropolymer reactive material with carbon nanofillers. Combustion and Flame, 2015, 162, 1417-1421.                                                                                            | 2.8 | 28        |
| 71 | Radio Frequency Heating of Laser-Induced Graphene on Polymer Surfaces for Rapid Welding. ACS<br>Applied Nano Materials, 2019, 2, 7032-7042.                                                                                                                     | 2.4 | 28        |
| 72 | Cosolvents as Liquid Surfactants for Boron Nitride Nanosheet (BNNS) Dispersions. Langmuir, 2016, 32,<br>11591-11599.                                                                                                                                            | 1.6 | 24        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior.<br>ACS Nano, 2019, 13, 8957-8969.                                                                                                         | 7.3 | 24        |
| 74 | pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors.<br>Molecular Systems Design and Engineering, 2020, 5, 366-375.                                                                               | 1.7 | 24        |
| 75 | Continuous processing of pre-pregs using radio frequency heating. Composites Science and Technology, 2020, 195, 108211.                                                                                                                      | 3.8 | 24        |
| 76 | Radio frequency heating and material processing using carbon susceptors. Nanoscale Advances, 2021, 3, 5255-5264.                                                                                                                             | 2.2 | 24        |
| 77 | Tunable dispersibility and wettability of graphene oxide through one-pot functionalization and reduction. Journal of Colloid and Interface Science, 2019, 552, 771-780.                                                                      | 5.0 | 23        |
| 78 | Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. Nanoscale, 2019, 11, 9617-9625.                                                                                                                       | 2.8 | 22        |
| 79 | Oxidative Stability of Nb <sub><i>n</i>+1</sub> C <sub><i>n</i></sub> T <sub><i>z</i></sub> MXenes.<br>Journal of Physical Chemistry C, 2021, 125, 13990-13996.                                                                              | 1.5 | 21        |
| 80 | Synthesis and Electronic Applications of Particle-Templated<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i></sub> MXene–Polymer Films via Pickering Emulsion<br>Polymerization. ACS Applied Materials & Interfaces, 2021, 13, 51556-51566. | 4.0 | 21        |
| 81 | Carbon Additive-Free Crumpled Ti <sub>3</sub> C <sub>2</sub> T <i><sub>X</sub></i><br>MXene-Encapsulated Silicon Nanoparticle Anodes for Lithium-Ion Batteries. ACS Applied Energy<br>Materials, 2021, 4, 10762-10773.                       | 2.5 | 20        |
| 82 | Radio Frequency and Microwave Heating of Preceramic Polymer Nanocomposites with Applications in<br>Moldâ€Free Processing. Advanced Engineering Materials, 2019, 21, 1900276.                                                                 | 1.6 | 19        |
| 83 | Local heating and curing of carbon nanocomposite adhesives using radio frequencies. Journal of<br>Manufacturing Processes, 2020, 58, 436-442.                                                                                                | 2.8 | 19        |
| 84 | Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with<br>Chemically Diverse MXenes. Langmuir, 2021, 37, 11338-11350.                                                                                    | 1.6 | 19        |
| 85 | Interparticle interactions and rheological signatures of Ti3C2Tz MXene dispersions. Journal of Colloid and Interface Science, 2022, 605, 120-128.                                                                                            | 5.0 | 19        |
| 86 | Cryogenicâ€ŧemperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. Journal of Microscopy, 2015, 259, 16-25.                                                                                 | 0.8 | 18        |
| 87 | Trophic Transfer and Accumulation of Multiwalled Carbon Nanotubes in the Presence of Copper Ions<br>in <i>Daphnia magna</i> and Fathead Minnow ( <i>Pimephales promelas</i> ). Environmental Science<br>& Technology, 2018, 52, 794-800.     | 4.6 | 18        |
| 88 | Wire Melt Electrospinning of Thin Polymeric Fibers via Strong Electrostatic Field Gradients.<br>Macromolecular Materials and Engineering, 2019, 304, 1800417.                                                                                | 1.7 | 18        |
| 89 | Minimizing two-dimensional Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> MXene nanosheet loading in carbon-free silicon anodes. Nanoscale, 2020, 12, 20699-20709.                                                                            | 2.8 | 18        |
| 90 | Structural reduced graphene oxide supercapacitors mechanically enhanced with tannic acid.<br>Sustainable Energy and Fuels, 2020, 4, 2301-2308.                                                                                               | 2.5 | 18        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Kinetics of carbon nanotube-loaded epoxy curing: Rheometry, differential scanning calorimetry, and radio frequency heating. Carbon, 2021, 175, 1-10.                                                                 | 5.4 | 18        |
| 92  | Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation. Langmuir, 2021, 37, 2649-2657.                                                                                                | 1.6 | 17        |
| 93  | Thermal Stability and Flammability Studies of MXene–Organic Hybrid Polystyrene Nanocomposites.<br>Polymers, 2022, 14, 1213.                                                                                          | 2.0 | 17        |
| 94  | Extending the excluded volume for percolation threshold estimates in polydisperse systems: The binary disk system. Applied Mathematical Modelling, 2017, 46, 116-125.                                                | 2.2 | 16        |
| 95  | A Novel Approach for Melt Electrospinning of Polymer Fibers. Procedia Manufacturing, 2018, 26, 205-208.                                                                                                              | 1.9 | 16        |
| 96  | The Role of Antioxidant Structure in Mitigating Oxidation in<br>Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> and Ti <sub>2</sub> CT <i><sub>x</sub></i> MXenes.<br>Advanced Materials Interfaces, 2022, 9, . | 1.9 | 16        |
| 97  | Radio frequency heating and reduction of Graphene Oxide and Graphene Oxide - Polyvinyl Alcohol<br>Composites. Carbon, 2020, 169, 475-481.                                                                            | 5.4 | 15        |
| 98  | Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene<br>Oxide/Aramid Nanofiber Electrodes for Supercapacitors. ACS Nano, 2020, 14, 5314-5323.                                         | 7.3 | 15        |
| 99  | Dielectric Barrier Discharge Applicator for Heating Carbon Nanotube-Loaded Interfaces and Enhancing 3D-Printed Bond Strength. Nano Letters, 2020, 20, 2310-2315.                                                     | 4.5 | 15        |
| 100 | Assessment of length and bundle distribution of dilute singleâ€walled carbon nanotubes by viscosity<br>measurements. AICHE Journal, 2014, 60, 1499-1508.                                                             | 1.8 | 14        |
| 101 | Effect of dsDNA wrapped single-walled carbon nanotubes on the thermal and mechanical properties of polycaprolactone and polyglycolide fiber blend composites. Polymer, 2015, 56, 476-481.                            | 1.8 | 14        |
| 102 | Lightweight Kevlarâ€Reinforced Graphene Oxide Architectures with High Strength for Energy Storage.<br>Advanced Materials Interfaces, 2019, 6, 1900786.                                                               | 1.9 | 14        |
| 103 | Graphene Oxide Synthesis: Reaction Calorimetry and Safety. Industrial & Engineering Chemistry<br>Research, 2020, 59, 9004-9014.                                                                                      | 1.8 | 14        |
| 104 | Joule heating of carbon pixels for on-demand thermal patterning. Carbon, 2021, 174, 518-523.                                                                                                                         | 5.4 | 14        |
| 105 | Conformal Layer-by-Layer Assembly of Ti <sub>3</sub> C <sub>2</sub> T <i><sub>z</sub></i> MXene-Only<br>Thin Films for Optoelectronics and Energy Storage. Chemistry of Materials, 2022, 34, 4884-4895.              | 3.2 | 14        |
| 106 | Brownian dynamics simulations of nanosheet solutions under shear. Journal of Chemical Physics, 2014, 141, 024905.                                                                                                    | 1.2 | 13        |
| 107 | Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks. Nanoscale, 2014, 6, 11722-11731.                                                                                           | 2.8 | 13        |
| 108 | Modeling of downstream heating in melt electrospinning of polymers. Journal of Polymer Science,<br>Part B: Polymer Physics, 2017, 55, 1393-1405.                                                                     | 2.4 | 13        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | High-throughput screening of printed carbon nanotube circuits using radio frequency heating.<br>Carbon, 2019, 152, 444-450.                                                                                                               | 5.4 | 13        |
| 110 | Calorimetry of explosive thermal decomposition of graphite oxide. Journal of Hazardous Materials, 2019, 366, 275-281.                                                                                                                     | 6.5 | 13        |
| 111 | Direct imaging of carbon nanotubes spontaneously filled with solvent. Chemical Communications, 2011, 47, 1228-1230.                                                                                                                       | 2.2 | 12        |
| 112 | Graphene non-covalently tethered with magnetic nanoparticles. Carbon, 2014, 72, 192-199.                                                                                                                                                  | 5.4 | 12        |
| 113 | Distinguishing Self-Assembled Pyrene Structures from Exfoliated Graphene. Langmuir, 2016, 32, 10699-10704.                                                                                                                                | 1.6 | 12        |
| 114 | Gradient Films of Pristine Graphene/Pyrene-Functional Copolymers with Janus Electrical Properties.<br>ACS Applied Materials & Interfaces, 2016, 8, 31813-31821.                                                                           | 4.0 | 12        |
| 115 | Tailored Network Formation in Graphene Oxide Gels. Langmuir, 2018, 34, 8550-8559.                                                                                                                                                         | 1.6 | 12        |
| 116 | Universal patterns of radio-frequency heating in nanomaterial-loaded structures. Applied Materials<br>Today, 2021, 23, 101044.                                                                                                            | 2.3 | 12        |
| 117 | Sprayâ€On Reduced Graphene Oxideâ€Poly(vinyl alcohol) Supercapacitors for Flexible Energy and Power.<br>Advanced Materials Interfaces, 2018, 5, 1801237.                                                                                  | 1.9 | 11        |
| 118 | Orientation Relaxation Dynamics in Cellulose Nanocrystal Dispersions in the Chiral Liquid Crystalline<br>Phase. Langmuir, 2018, 34, 13274-13282.                                                                                          | 1.6 | 11        |
| 119 | Effect of pseudomonas lipase enzyme on the degradation of<br>polycaprolactone/polycaprolactone-polyglycolide fiber blended nanocomposites. International<br>Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 360-367. | 1.8 | 11        |
| 120 | Scalable Production of Graphene Nanoplatelets for Energy Storage. ACS Applied Nano Materials, 2020,<br>3, 10303-10309.                                                                                                                    | 2.4 | 11        |
| 121 | Electrical current stimulated desorption of carbon dioxide adsorbed on graphene based structures.<br>RSC Advances, 2016, 6, 43401-43407.                                                                                                  | 1.7 | 10        |
| 122 | Ultrafast and Highly Localized Microwave Heating in Carbon Nanotube Multilayer Thin Films.<br>Advanced Materials Interfaces, 2017, 4, 1700371.                                                                                            | 1.9 | 10        |
| 123 | Using Radioâ€Frequency Fields for Local Heating and Curing of Adhesive for Bonding Metals. Advanced<br>Engineering Materials, 2021, 23, 2100210.                                                                                          | 1.6 | 10        |
| 124 | Rapid Manufacturing via Selective Radioâ€Frequency Heating and Curing of Thermosetting Resins.<br>Advanced Engineering Materials, 2022, 24, .                                                                                             | 1.6 | 9         |
| 125 | Dynamics of chiral liquid crystals under applied shear. Liquid Crystals, 2013, 40, 846-853.                                                                                                                                               | 0.9 | 8         |
| 126 | Brownian dynamics simulation of twoâ€dimensional nanosheets under biaxial extensional flow. Journal<br>of Polymer Science, Part B: Polymer Physics, 2015, 53, 1247-1253.                                                                  | 2.4 | 8         |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Photodegradation of dispersants in colloidal suspensions of pristine graphene. Journal of Colloid and Interface Science, 2016, 466, 425-431.                                                            | 5.0 | 8         |
| 128 | Radio Frequency Driven Heating of Catalytic Reactors for Portable Green Chemistry. Advanced<br>Sustainable Systems, 2020, 4, 2000095.                                                                   | 2.7 | 8         |
| 129 | Computation of the nonhomogeneous equilibrium states of a rigid-rod solution. Journal of Chemical Physics, 2006, 125, 214906.                                                                           | 1.2 | 7         |
| 130 | Nonhomogeneous shear flow in concentrated liquid-crystalline solutions. Physics of Fluids, 2007, 19,                                                                                                    | 1.6 | 7         |
| 131 | Siteâ€Specific Selective Bending of Actuators using Radio Frequency Heating. Advanced Engineering<br>Materials, 2021, 23, 2000873.                                                                      | 1.6 | 7         |
| 132 | Rheological phase diagrams for nonhomogeneous flows of rodlike liquid crystalline polymers.<br>Journal of Non-Newtonian Fluid Mechanics, 2009, 157, 34-43.                                              | 1.0 | 6         |
| 133 | The effect of bending stiffness on scaling laws for the size of colloidal nanosheets. Nanotechnology, 2016, 27, 235702.                                                                                 | 1.3 | 6         |
| 134 | Wire Melt Electrospun Polymer Nanocomposite Fibers as Radio Frequency Responsive Heaters. ACS<br>Applied Polymer Materials, 2019, 1, 2751-2759.                                                         | 2.0 | 6         |
| 135 | Chiral Structure Formation during Casting of Cellulose Nanocrystalline Films. Langmuir, 2020, 36, 4975-4984.                                                                                            | 1.6 | 6         |
| 136 | Sustainable production of graphene from petroleum coke using electrochemical exfoliation. Npj 2D<br>Materials and Applications, 2021, 5, .                                                              | 3.9 | 6         |
| 137 | Radio frequency heating of PEDOT:PSS. Polymer, 2021, 230, 124077.                                                                                                                                       | 1.8 | 6         |
| 138 | Initial stage of spinodal decomposition in a rigid-rod system. Journal of Chemical Physics, 2007, 126, 034903.                                                                                          | 1.2 | 5         |
| 139 | Theoretical analysis of the stabilization of graphene nanosheets by means of strongly polarized pyrene derivatives. Chemical Physics, 2019, 527, 110468.                                                | 0.9 | 5         |
| 140 | Highly selective laser-induced graphene (LIG)/polysulfone composite membrane for hydrogen purification. Applied Materials Today, 2021, 22, 100971.                                                      | 2.3 | 5         |
| 141 | Radio Frequency Heating Response of Polyacrylonitrile (PAN) Films and Nanofiber Mats. ACS Applied<br>Polymer Materials, 2021, 3, 3125-3130.                                                             | 2.0 | 5         |
| 142 | Graphene signatures: Identifying graphite and graphene grades via radio frequency heating. Carbon, 2021, 182, 564-570.                                                                                  | 5.4 | 5         |
| 143 | Isotropic–nematic phase separation and demixing in mixtures of spherical nanoparticles with<br>lengthâ€polydisperse nanorods. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1321-1327. | 2.4 | 4         |
| 144 | Graphene reflux: improving the yield of liquid-exfoliated nanosheets through repeated separation techniques. Nanotechnology, 2016, 27, 505601.                                                          | 1.3 | 4         |

| #   | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Detection and quantification of free carbon nanotubes in abraded polymer nanocomposites using<br>UV–vis spectroscopy. NanoImpact, 2019, 16, 100190.                                                                                                                                 | 2.4 | 4         |
| 146 | Highâ€density polyethylene reinforced by low loadings of electrochemically exfoliated graphene via melt recirculation approach. Journal of Applied Polymer Science, 2021, 138, 50448.                                                                                               | 1.3 | 4         |
| 147 | Rapid Synthesis of Patterned Silicon Carbide Coatings Using Laserâ€Induced Pyrolysis and<br>Crystallization of Polycarbosilane. Advanced Engineering Materials, 2022, 24, .                                                                                                         | 1.6 | 4         |
| 148 | Anion Identity and Time Scale Affect the Cation Insertion Energy Storage Mechanism in<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Multilayers. ACS Energy Letters, 2022, 7,<br>1828-1834.                                                                         | 8.8 | 4         |
| 149 | Melt Electrospinning Polyethylene Fibers in Inert Atmosphere. Macromolecular Materials and Engineering, 2020, 305, 2000106.                                                                                                                                                         | 1.7 | 3         |
| 150 | Mechanics of nanoscale crumpled graphene measured by Atomic Force Microscopy. Extreme Mechanics<br>Letters, 2020, 40, 100873.                                                                                                                                                       | 2.0 | 2         |
| 151 | High-shear treatment of single-walled carbon nanotube—superacid solutions as a pre-processing<br>technique for the assembly of fibres and films. Proceedings of the Institution of Mechanical<br>Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2008, 222, 101-109. | 0.1 | 1         |
| 152 | Spinodal decomposition and nematic coarsening in a rigid-rod solution. Journal of Non-Newtonian<br>Fluid Mechanics, 2009, 161, 30-36.                                                                                                                                               | 1.0 | 1         |
| 153 | Non-destructive technique for broadband characterization of carbon nanotubes at microwave frequencies. Journal of Electromagnetic Waves and Applications, 2013, 27, 1372-1381.                                                                                                      | 1.0 | 1         |
| 154 | Radio Frequency Dielectric Characterization and Processing of Polymers Containing Nanomaterial Susceptors. , 2019, , .                                                                                                                                                              |     | 1         |
| 155 | Water-Dispersible Ti <sub>3</sub> C <sub>2</sub> T <sub>z</sub> MXene Nanosheets by Acid-Free,<br>Molten Salt Etching. SSRN Electronic Journal, 0, , .                                                                                                                              | 0.4 | 1         |
| 156 | Phase Transitions of a Rigid-Rod Solution in a Thin Slit. Journal of Computational and Theoretical Nanoscience, 2010, 7, 693-699.                                                                                                                                                   | 0.4 | 0         |
| 157 | Energy Conversion: Radio Frequency Driven Heating of Catalytic Reactors for Portable Green<br>Chemistry (Adv. Sustainable Syst. 11/2020). Advanced Sustainable Systems, 2020, 4, 2070024.                                                                                           | 2.7 | 0         |
| 158 | Mechanical and Barrier Properties of Bromo–Butyl Elastomers Filled with Electrochemically<br>Exfoliated Graphene. Macromolecular Materials and Engineering, 2021, 306, 2100153.                                                                                                     | 1.7 | 0         |
| 159 | <i>In Situ</i> Temperature-Dependent Dielectric Characterization of Nanocomposites Heated With RF Energy. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.                                                                                                      | 2.4 | 0         |
| 160 | Safer carbon nanotube processing expands industrial and consumer applications. Science Advances, 2022, 8, eabq4853.                                                                                                                                                                 | 4.7 | 0         |