
Richard O Magwanga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics, 2018, 19, 6.	2.7	216
2	Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis. Frontiers in Plant Science, 2019, 10, 299.	1.7	68
3	Genome wide identification of the trihelix transcription factors and overexpression of <i>Ch_A05G2067</i> (<i>CTâ€2</i>), a novel gene contributing to increased drought and salt stresses tolerance in cotton. Physiologia Plantarum, 2019, 167, 447-464.	2.6	57
4	Genome-Wide Analysis of Multidrug and Toxic Compound Extrusion (<i>MATE</i>) Family in <i>Gossypium raimondii</i> and <i>Gossypium arboreum</i> and Its Expression Analysis Under Salt, Cadmium, and Drought Stress. G3: Genes, Genomes, Genetics, 2018, 8, 2483-2500.	0.8	56
5	Knockdown of Cytochrome P450 Genes Gh_D07G1197 and Gh_A13G2057 on Chromosomes D07 and A13 Reveals Their Putative Role in Enhancing Drought and Salt Stress Tolerance in Gossypium hirsutum. Genes, 2019, 10, 226.	1.0	52
6	Whole Genome Analysis of Cyclin Dependent Kinase (CDK) Gene Family in Cotton and Functional Evaluation of the Role of CDKF4 Gene in Drought and Salt Stress Tolerance in Plants. International Journal of Molecular Sciences, 2018, 19, 2625.	1.8	51
7	Cotton Late Embryogenesis Abundant (<i>LEA2)</i> Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2781-2803.	0.8	51
8	A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis. Genes, 2018, 9, 209.	1.0	50
9	High-Density Linkage Map Construction and Mapping of Salt-Tolerant QTLs at Seedling Stage in Upland Cotton Using Genotyping by Sequencing (GBS). International Journal of Molecular Sciences, 2017, 18, 2622.	1.8	42
10	GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC2F2 Generation. International Journal of Molecular Sciences, 2018, 19, 1614.	1.8	39
11	Functional characterization of Ch_A08G1120 (CH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genetics, 2019, 20, 62.	2.7	39
12	QTL Mapping of Fiber Quality and Yield-Related Traits in an Intra-Specific Upland Cotton Using Genotype by Sequencing (GBS). International Journal of Molecular Sciences, 2018, 19, 441.	1.8	37
13	Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics. BMC Genomics, 2020, 21, 15.	1.2	33
14	Simple Sequence Repeat (SSR) Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum. International Journal of Molecular Sciences, 2018, 19, 204.	1.8	31
15	RNA-Sequencing, Physiological and RNAi Analyses Provide Insights into the Response Mechanism of the ABC-Mediated Resistance to Verticillium dahliae Infection in Cotton. Genes, 2019, 10, 110.	1.0	31
16	Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. International Journal of Molecular Sciences, 2019, 20, 1863.	1.8	29
17	Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB PLANTS, 2019, 11, plz045.	1.2	27
18	Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics, 2019, 20, 651.	1.2	21

#	Article	IF	CITATIONS
19	Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum. Journal of Cotton Research, 2019, 2, .	1.0	21
20	Late embryogenesis abundant gene LEA3 (Ch_A08C0694) enhances drought and salt stress tolerance in cotton. International Journal of Biological Macromolecules, 2022, 207, 700-714.	3.6	20
21	Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin genes, Reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics, 2020, 112, 1902-1915.	1.3	19
22	Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics, 2019, 20, 661.	1.2	18
23	Knockdown of GhIQD31 and GhIQD32 increases drought and salt stress sensitivity in Gossypium hirsutum. Plant Physiology and Biochemistry, 2019, 144, 166-177.	2.8	16
24	Identification of QTLs and candidate genes for physiological traits associated with drought tolerance in cotton. Journal of Cotton Research, 2020, 3, .	1.0	16
25	Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. Journal of Experimental Botany, 2022, 73, 873-885.	2.4	15
26	Functional Characterization of GhACX3 Gene Reveals Its Significant Role in Enhancing Drought and Salt Stress Tolerance in Cotton. Frontiers in Plant Science, 2021, 12, 658755.	1.7	15
27	Identification and functional characterization of Gh_D01G0514 (GhNAC072) transcription factor in response to drought stress tolerance in cotton. Plant Physiology and Biochemistry, 2021, 166, 361-375.	2.8	15
28	Knockdown of 60S ribosomal protein L14-2 reveals their potential regulatory roles to enhance drought and salt tolerance in cotton. Journal of Cotton Research, 2021, 4, .	1.0	13
29	Map-Based Functional Analysis of the GhNLP Genes Reveals Their Roles in Enhancing Tolerance to N-Deficiency in Cotton. International Journal of Molecular Sciences, 2019, 20, 4953.	1.8	11
30	Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background. BMC Genomics, 2020, 21, 859.	1.2	11
31	Functional Characterization of Cotton C-Repeat Binding Factor Genes Reveal Their Potential Role in Cold Stress Tolerance. Frontiers in Plant Science, 2021, 12, 766130.	1.7	10
32	Genome wide identification and characterization of light-harvesting Chloro a/b binding (LHC) genes reveals their potential role in enhancing drought tolerance in Gossypium hirsutum. Journal of Cotton Research, 2021, 4, .	1.0	8
33	A Comparison of Nitrogen Transfer and Transformation in Traditional Farming and the Rice–Duck Farming System by 15N Tracer Method. Agronomy, 2018, 8, 289.	1.3	7
34	SSR-Linkage map of interspecific populations derived from Gossypium trilobum and Gossypium thurberi and determination of genes harbored within the segregating distortion regions. PLoS ONE, 2018, 13, e0207271.	1.1	6
35	Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. Frontiers in Plant Science, 2019, 10, 1292.	1.7	6
36	Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biology, 2020, 20, 518.	1.6	6

#	Article	IF	CITATIONS
37	ldentification of a genome-specific repetitive element in the <i>Gossypium</i> D genome. PeerJ, 2020, 8, e8344.	0.9	2
38	Genetic map construction and functional characterization of genes within the segregation distortion regions (SDRs) in the F2:3 populations derived from wild cotton species of the D genome. Journal of Cotton Research, 2020, 3, .	1.0	0
39	Physiological and Developmental Response of Selected Upland Rice Genotypes to Water and Nutrient Stress Condition. , 0, , 22-39.		ο