EonSeon Jin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/330555/eonseon-jin-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

110
papers2,502
citations28
h-index45
g-index120
ext. papers3,014
ext. citations5.5
avg, IF5.3
L-index

#	Paper	IF	Citations
110	Macular pigment-enriched oil production from genome-edited microalgae <i>Microbial Cell Factories</i> , 2022 , 21, 27	6.4	2
109	Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA <i>Nature Communications</i> , 2022 , 13, 1133	17.4	5
108	Augmented CO tolerance by expressing a single H-pump enables microalgal valorization of industrial flue gas. <i>Nature Communications</i> , 2021 , 12, 6049	17.4	4
107	Comparative transcriptome analysis of short-term responses to salt and glycerol hyperosmotic stress in the green alga Dunaliella salina. <i>Algal Research</i> , 2021 , 53, 102147	5	2
106	Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from. <i>ELife</i> , 2021 , 10,	8.9	10
105	Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 897-909	6.8	1
104	Bone Graft Biomineral Complex Coderived from Marine Biocalcification and Biosilicification <i>ACS Applied Bio Materials</i> , 2021 , 4, 6046-6055	4.1	O
103	LPA2 protein is involved in photosystem[]I assembly in Chlamydomonas reinhardtii. <i>Plant Journal</i> , 2021 , 107, 1648-1662	6.9	5
102	Establishment of a Genome Editing Tool Using CRISPR-Cas9 in UTEX395. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	5
101	The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism. <i>Plant Cell</i> , 2021 ,	11.6	2
100	The alga Dunaliella revisited: Looking back and moving forward with model and production organisms. <i>Algal Research</i> , 2020 , 49, 101948	5	6
99	Proteomic Profiling of Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. <i>Molecules</i> , 2020 , 25,	4.8	3
98	Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas. <i>Journal of Applied Phycology</i> , 2020 , 32, 2829-2840	3.2	21
97	Arginine-fed cultures generates triacylglycerol by triggering nitrogen starvation responses during robust growth in Chlamydomonas. <i>Algal Research</i> , 2020 , 46, 101782	5	3
96	Development of a Chlorella vulgaris mutant by chemical mutagenesis as a producer for natural violaxanthin. <i>Algal Research</i> , 2020 , 46, 101790	5	14
95	Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. <i>Bioresource Technology</i> , 2020 , 303, 122932	11	29
94	Antifreeze Protein-Covered Surfaces 2020 , 307-326		

(2019-2020)

93	Characterization of Ice-Binding Proteins from Sea-Ice Microalgae. <i>Methods in Molecular Biology</i> , 2020 , 2156, 289-302	1.4	
92	Heterologous Gene Expression System Using the Cold-Inducible Promoter in. <i>Journal of Microbiology and Biotechnology</i> , 2020 , 30, 1777-1784	3.3	1
91	Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. <i>Plant, Cell and Environment</i> , 2020 , 43, 496-509	8.4	14
90	Stabilized and Immobilized Carbonic Anhydrase on Electrospun Nanofibers for Enzymatic CO Conversion and Utilization in Expedited Microalgal Growth. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 1223-1231	10.3	36
89	Genomic adaptations of the green alga Dunaliella salina to life under high salinity. <i>Algal Research</i> , 2020 , 50, 101990	5	5
88	The generation of metabolic changes for the production of high-purity zeaxanthin mediated by CRISPR-Cas9 in Chlamydomonas reinhardtii. <i>Microbial Cell Factories</i> , 2020 , 19, 220	6.4	13
87	Enhanced pyruvate metabolism in plastids by overexpression of putative plastidial pyruvate transporter in. <i>Biotechnology for Biofuels</i> , 2020 , 13, 120	7.8	7
86	Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore. <i>Microorganisms</i> , 2020 , 8,	4.9	2
85	Development of a species-specific transformation system using the novel endogenous promoter calreticulin from oleaginous microalgae Ettlia sp. <i>Scientific Reports</i> , 2020 , 10, 13947	4.9	3
84	Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in via a CRISPR-Cas9-Mediated Knock-in Method. <i>Frontiers in Plant Science</i> , 2020 , 11, 306	6.2	27
83	De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. <i>PLoS ONE</i> , 2019 , 14, e0221938	3.7	7
82	Overexpression of malic enzyme isoform 2 in Chlamydomonas reinhardtii PTS42 increases lipid production. <i>Bioresource Technology Reports</i> , 2019 , 7, 100239	4.1	15
81	Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetables. <i>Food Hydrocolloids</i> , 2019 , 94, 585-591	10.6	20
80	A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. <i>Biosensors and Bioelectronics</i> , 2019 , 123, 160-166	11.8	19
79	Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. <i>Bioresource Technology</i> , 2019 , 292, 121953	11	52
78	Sedimentation rate-based screening of oleaginous microalgae for utilization as a direct combustion fuel. <i>Bioresource Technology</i> , 2019 , 293, 122045	11	14
77	Gene Expression Analysis of Zeaxanthin Epoxidase from the Marine Microalga in Response to Light/Dark Cycle and Salinity. <i>Journal of Microbiology and Biotechnology</i> , 2019 , 29, 1453-1459	3.3	2
76	Overproduction of recombinant E. coli malate synthase enhances Chlamydomonas reinhardtii biomass by upregulating heterotrophic metabolism. <i>Bioresource Technology</i> , 2019 , 272, 594-598	11	3

75	Targeted knockout of phospholipase A to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. <i>Bioresource Technology</i> , 2019 , 271, 368-374	11	69
74	Vibration-induced stress priming during seed culture increases microalgal biomass in high shear field-cultivation. <i>Bioresource Technology</i> , 2018 , 254, 340-346	11	3
73	Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii. <i>Journal of Experimental Botany</i> , 2018 , 69, 1147-1158	7	27
72	Enhanced biomass production by Phaeodactylum tricornutum overexpressing phosphoenolpyruvate carboxylase. <i>Algal Research</i> , 2018 , 31, 489-496	5	9
71	Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. <i>Scientific Reports</i> , 2018 , 8, 11595	4.9	8
70	Identification and Functional Analysis of the Promoter of Using Heterologous Model Strains. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	7
69	Calcium-related genes associated with intracellular calcification of Emiliania huxleyi (Haptophyta) CCMP 371. <i>Algae</i> , 2018 , 33, 181-189	2.4	4
68	Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light. <i>Algae</i> , 2018 , 33, 191-203	2.4	2
67	Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. <i>Bioresource Technology</i> , 2018 , 249, 519-52	2 [1	30
66	Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 719-728	4.9	56
65	Loss of Function in Zeaxanthin Epoxidase of Caused by a Single Amino Acid Mutation within the Substrate-Binding Site. <i>Marine Drugs</i> , 2018 , 16,	6	3
64	Draft Nuclear Genome Sequence of the Halophilic and Beta-Carotene-Accumulating Green Alga Strain CCAP19/18. <i>Genome Announcements</i> , 2017 , 5,		49
63	Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii. <i>Algal Research</i> , 2017 , 27, 162-169	5	9
62	Gene Regulatory Networks for the Haploid-to-Diploid Transition of. <i>Plant Physiology</i> , 2017 , 175, 314-33	2 6.6	25
61	Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2017 , 1858, 45-55	4.6	30
60	Development of a Dunaliella tertiolecta Strain with Increased Zeaxanthin Content Using Random Mutagenesis. <i>Marine Drugs</i> , 2017 , 15,	6	18
59	Identification and Characterization of an Isoform Antifreeze Protein from the Antarctic Marine Diatom, Chaetoceros neogracile and Suggestion of the Core Region. <i>Marine Drugs</i> , 2017 , 15,	6	7
58	DNA-free Genome Editing of Using CRISPR and Subsequent Mutant Analysis. <i>Bio-protocol</i> , 2017 , 7, e235	2 .9	3

(2014-2016)

57	Identification of the carbonic anhydrases from the unicellular green alga Dunaliella salina strain CCAP 19/18. <i>Algal Research</i> , 2016 , 19, 12-20	5	8
56	Synergistic effect of multiple stress conditions for improving microalgal lipid production. <i>Algal Research</i> , 2016 , 19, 215-224	5	48
55	NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein. <i>FEBS Letters</i> , 2016 , 590, 4202-4212	3.8	5
54	DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. <i>Scientific Reports</i> , 2016 , 6, 30620	4.9	188
53	New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp. <i>PLoS ONE</i> , 2016 , 11, e0154056	3.7	15
52	Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii. <i>Biotechnology Journal</i> , 2016 , 11, 384-92	5.6	20
51	Development of a new constitutive expression system for the transformation of the diatom Phaeodactylum tricornutum. <i>Algal Research</i> , 2015 , 11, 50-54	5	40
50	Homologous sense and antisense expression of a gene in Dunaliella tertiolecta. <i>Planta</i> , 2015 , 242, 1051	-8 .7	3
49	Creating Anti-icing Surfaces via the Direct Immobilization of Antifreeze Proteins on Aluminum. <i>Scientific Reports</i> , 2015 , 5, 12019	4.9	50
48	One-pot enzymatic conversion of carbon dioxide and utilization for improved microbial growth. <i>Environmental Science & Environmental &</i>	10.3	21
47	Construction of target-specific virus-like particles for the delivery of algicidal compounds to harmful algae. <i>Environmental Microbiology</i> , 2015 , 17, 1463-74	5.2	5
46	Contrasting photoadaptive strategies of two morphologically distinct Dunaliella species under various salinities. <i>Journal of Applied Phycology</i> , 2015 , 27, 1053-1062	3.2	12
45	Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27554-61	9.5	14
44	A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. <i>World Journal of Microbiology and Biotechnology</i> , 2014 , 30, 1603-14	4.4	8
43	Isolation and characterization of antifreeze proteins from the antarctic marine microalga Pyramimonas gelidicola. <i>Marine Biotechnology</i> , 2014 , 16, 502-12	3.4	16
42	An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. <i>FASEB Journal</i> , 2014 , 28, 4924-35	0.9	16
41	Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. <i>Journal of Experimental Botany</i> , 2014 , 65, 4317-34	7	115
40	Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering. <i>Enzyme and Microbial Technology</i> , 2014 , 60, 64-71	3.8	6

39	Characterization of ice binding proteins from sea ice algae. <i>Methods in Molecular Biology</i> , 2014 , 1166, 241-53	1.4	1
38	Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase. <i>Bioprocess and Biosystems Engineering</i> , 2013 , 36, 1923-8	3.7	15
37	Combination of 1,4-naphthoquinone with benzothiazoles had selective algicidal effects against harmful algae. <i>Biotechnology and Bioprocess Engineering</i> , 2013 , 18, 932-941	3.1	6
36	Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. <i>Journal of Microbiology</i> , 2013 , 51, 773-6	3	7
35	Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. <i>Planta</i> , 2013 , 238, 1147-56	4.7	21
34	Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. <i>Scientific Reports</i> , 2013 , 3, 1292	4.9	42
33	Oxaloacetate and malate production in engineered Escherichia coli by expression of codon-optimized phosphoenolpyruvate carboxylase2 gene from Dunaliella salina. <i>Bioprocess and Biosystems Engineering</i> , 2013 , 36, 127-31	3.7	13
32	Frozen assembly of gold nanoparticles for rapid analysis of antifreeze protein activity. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 752-7	11.8	11
31	Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. <i>Algae</i> , 2013 , 28, 203-211	2.4	20
30	Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. <i>Marine Biotechnology</i> , 2012 , 14, 312-22	3.4	24
29	Analysis of expressed sequence tags from the antarctic psychrophilic green algae, Pyramimonas gelidicola. <i>Journal of Microbiology and Biotechnology</i> , 2012 , 22, 902-6	3.3	3
28	Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures. <i>Journal of Materials Science</i> , 2011 , 46, 4741-4747	4.3	8
27	Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. <i>Biotechnology and Bioprocess Engineering</i> , 2011 , 16, 698-705	3.1	32
26	Enhanced efficacy of TD53, a novel algicidal agent, against the harmful algae via the liposomal delivery system. <i>International Journal of Pharmaceutics</i> , 2011 , 405, 137-41	6.5	13
25	Gene expression profiling of Dunaliella sp. acclimated to different salinities. <i>Phycological Research</i> , 2010 , 58, 17-28	1.3	16
24	Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. <i>Planta</i> , 2010 , 231, 349-60	4.7	45
23	Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. <i>Marine Biotechnology</i> , 2010 , 12, 630-9	3.4	51
22	Inhibition of Oxidative Phosphorylation Induces a Rapid Death of GA-Pretreated Aleurone Cells, But Not of ABA-Pretreated Aleurone Cells 2010 , 53, 205-213		

(2001-2010)

21	Thiazolidinediones as a novel class of algicides against red tide harmful algal species. <i>Applied Biochemistry and Biotechnology</i> , 2010 , 162, 2273-83	3.2	28
20	Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 75, 584-9	6	185
19	Biogenic Nano-Synthesis; towards the Efficient Production of the Biocompatible Gold Nanoparticles. <i>Bulletin of the Korean Chemical Society</i> , 2010 , 31, 2771-2775	1.2	16
18	Effect of Temperature on Inorganic Carbon Acquisition of Chlamydomonas reinhardtii. <i>Journal of Freshwater Ecology</i> , 2009 , 24, 255-260	1.4	2
17	Chloroplast Acclimation, Photodamage and Repair Reactions of Photosystem-II in the Model Green Alga Dunaliella salina 2009 , 273-299		2
16	Carotenoid Biosynthesis in Dunaliella (Chlorophyta) 2009 , 147-171		12
15	Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. <i>Biochemical and Biophysical Research Communications</i> , 2008 , 367, 635-41	3.4	42
14	Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. <i>Journal of Applied Phycology</i> , 2008 , 20, 375-386	3.2	33
13	Identification and characterization of a new strain of the unicellular green alga Dunaliella salina (Teod.) from Korea. <i>Journal of Microbiology and Biotechnology</i> , 2008 , 18, 821-7	3.3	14
12	Annotation and expression profile analysis of cDNas from the Antarctic diatom Chaetoceros neogracile. <i>Journal of Microbiology and Biotechnology</i> , 2007 , 17, 1330-7	3.3	12
11	Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. <i>Planta</i> , 2006 , 223, 1231-42	4.7	37
10	Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. <i>Marine Biotechnology</i> , 2006 , 8, 120-8	3.4	36
9	Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. <i>Marine Biotechnology</i> , 2006 , 8, 238-45	3.4	18
8	A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 115-24	4.9	92
7	Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. <i>Plant Physiology</i> , 2003 , 132, 352-64	6.6	53
6	Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. <i>Plant Journal</i> , 2002 , 29, 617-26	6.9	42
5	Truncated chlorophyll antenna size of the photosystems practical method to improve microalgal productivity and hydrogen production in mass culture. <i>International Journal of Hydrogen Energy</i> , 2002 , 27, 1257-1264	6.7	155
4	Expression of telomerase activity is closely correlated with the capacity for cell division in tobacco plants 2001 , 44, 168-171		4

3	Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2001 , 1506, 244-59	4.6	68
2	Temporal and spatial regulation of the expression of 1-aminocyclopropane-1-carboxylate oxidase by ethylene in mung bean (Vigna radiata). <i>Physiologia Plantarum</i> , 1999 , 105, 132-140	4.6	19
1	Ubiquitin ligase component LRS1 and transcription factor CrHy5 act as a light switch for photoprotection in Chlamydomonas		1