
Gunnar C Hansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mucins. , 2023, , 415-421.		1
2	Enterotoxigenic <i>Escherichia coli</i> Degrades the Host MUC2 Mucin Barrier To Facilitate Critical Pathogen-Enterocyte Interactions in Human Small Intestine. Infection and Immunity, 2022, 90, IAI0057221.	1.0	16
3	Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nature Communications, 2022, 13, 45.	5.8	23
4	Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nature Chemical Biology, 2022, 18, 841-849.	3.9	16
5	Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1081-1095.	2.5	10
6	Association between <i>Brachyspira</i> and irritable bowel syndrome with diarrhoea. Gut, 2021, 70, 1117-1129.	6.1	31
7	An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science, 2021, 372, .	6.0	144
8	The IgGFc-binding protein FCGBP is secreted with all GDPH sequences cleaved but maintained by interfragment disulfide bonds. Journal of Biological Chemistry, 2021, 297, 100871.	1.6	20
9	New generation ENaC inhibitors detach cystic fibrosis airway mucus bundles via sodium/hydrogen exchanger inhibition. European Journal of Pharmacology, 2021, 904, 174123.	1.7	4
10	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	13.7	87
11	Mucus threads from surface goblet cells clear particles from the airways. Respiratory Research, 2021, 22, 303.	1.4	10
12	Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. Journal of Biological Chemistry, 2020, 295, 15712-15726.	1.6	28
13	Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1270-L1279.	1.3	12
14	Membrane mucins of the intestine at a glance. Journal of Cell Science, 2020, 133, .	1.2	74
15	Identifying transglutaminase reaction products via mass spectrometry as exemplified by the MUC2 mucin - Pitfalls and traps. Analytical Biochemistry, 2020, 597, 113668.	1.1	7
16	Mucins and the Microbiome. Annual Review of Biochemistry, 2020, 89, 769-793.	5.0	184
17	Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Reports, 2020, 30, 1077-1087.e3.	2.9	41
18	Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572, 474-480.	13.7	454

#	Article	IF	CITATIONS
19	The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. Journal of Experimental Medicine, 2019, 216, 2602-2618.	4.2	83
20	Calcium-activated chloride channel regulator 1 (CLCA1) forms non-covalent oligomers in colonic mucus and has mucin 2–processing properties. Journal of Biological Chemistry, 2019, 294, 17075-17089.	1.6	25
21	Normal Calcium-Activated Anion Secretion in a Mouse Selectively Lacking TMEM16A in Intestinal Epithelium. Frontiers in Physiology, 2019, 10, 694.	1.3	8
22	Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract. Cell Reports, 2019, 27, 2665-2678.e3.	2.9	88
23	Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut, 2019, 68, 2142-2151.	6.1	271
24	Mucus and mucins in diseases of the intestinal and respiratory tracts. Journal of Internal Medicine, 2019, 285, 479-490.	2.7	126
25	Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes, 2019, 10, 246-250.	4.3	66
26	The human transmembrane mucin MUC17 responds to TNFÎ \pm by increased presentation at the plasma membrane. Biochemical Journal, 2019, 476, 2281-2295.	1.7	11
27	Granule-stored MUC5B mucins are packed by the non-covalent formation of N-terminal head-to-head tetramers. Journal of Biological Chemistry, 2018, 293, 5746-5754.	1.6	50
28	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477
29	Progress in understanding mucus abnormalities in cystic fibrosis airways. Journal of Cystic Fibrosis, 2018, 17, S35-S39.	0.3	34
30	Attached stratified mucus separates bacteria from the epithelial cells in COPD lungs. JCI Insight, 2018, 3, .	2.3	35
31	Assembly, Release, and Transport of Airway Mucins in Pigs and Humans. Annals of the American Thoracic Society, 2018, 15, S159-S163.	1.5	20
32	The central exons of the human MUC2 and MUC6 mucins are highly repetitive and variable in sequence between individuals. Scientific Reports, 2018, 8, 17503.	1.6	20
33	Highly Accurate Identification of Cystic Precursor Lesions of Pancreatic Cancer Through Targeted Mass Spectrometry: A Phase IIc Diagnostic Study. Journal of Clinical Oncology, 2018, 36, 367-375.	0.8	43
34	The mucus bundles responsible for airway cleaning are retained in cystic fibrosis and by cholinergic stimulation. European Respiratory Journal, 2018, 52, 1800457.	3.1	43
35	Calcium-activated Chloride Channel Regulator 1 (CLCA1) Controls Mucus Expansion in Colon by Proteolytic Activity. EBioMedicine, 2018, 33, 134-143.	2.7	63
36	Core 1– and 3–derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunology, 2017, 10, 91-103.	2.7	128

#	Article	IF	CITATIONS
37	Functional mucous layer and healing of proximal colonic anastomoses in an experimental model. British Journal of Surgery, 2017, 104, 619-630.	0.1	14
38	Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Scientific Reports, 2017, 7, 83.	1.6	24
39	Goblet Cell Mediated Antigen Delivery to the Immune System is Linked to Mucus Secretion and Dependent on a Functional Cftr Channel. Gastroenterology, 2017, 152, S24.	0.6	1
40	Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology, 2017, 27, 318-328.	1.3	105
41	OligoG <scp>CF</scp> â€5/20 normalizes cystic fibrosis mucus by chelating calcium. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 639-647.	0.9	27
42	The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochemical and Biophysical Research Communications, 2017, 492, 331-337.	1.0	92
43	The Presence of two Bacterial Genera in the Colon Epithelium and Inner Mucus Layer May be Linked to Disease Development in Over a Third of IBS Patients. Gastroenterology, 2017, 152, S160-S161.	0.6	1
44	Cross-Linking of the MUC2 Mucin by Isopeptide Bonds Stabilizes the Colon Mucus and is Altered in Patients with Ulcerative Colitis. Gastroenterology, 2017, 152, S1002-S1003.	0.6	0
45	The Impact of Diet and Obesity on Intestinal Mucus Barrier Function. Gastroenterology, 2017, 152, S1004.	0.6	1
46	Targeted Proteomic Analysis of Pancreatic Cyst Fluid Accurately Identifies Cystic Precursors and Forms of Pancreatic Cancer. Gastroenterology, 2017, 152, S148-S149.	0.6	0
47	Gram-Positive Bacteria are held at a Distance in the Colon Mucus by the Lectin-Like Protein Zg16. Gastroenterology, 2017, 152, S1003.	0.6	2
48	Mucus Detachment by Host Metalloprotease Meprin \hat{l}^2 Requires Shedding of Its Inactive Pro-form, which Is Abrogated by the Pathogenic Protease RgpB. Cell Reports, 2017, 21, 2090-2103.	2.9	31
49	Bacteria Tell Us How to Protect Our Intestine. Cell Host and Microbe, 2017, 22, 3-4.	5.1	15
50	The Protein Composition of the Human Colonic Mucus: Reduced Levels of Core Structural Components in Ulcerative Colitis. Gastroenterology, 2017, 152, S1002.	0.6	0
51	The Mucins. , 2016, , 381-388.		12
52	Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 2016, 16, 639-649.	10.6	613
53	Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13833-13838.	3.3	113
54	Searching the Evolutionary Origin of Epithelial Mucus Protein Components—Mucins and FCGBP. Molecular Biology and Evolution, 2016, 33, 1921-1936.	3.5	104

#	Article	IF	CITATIONS
55	A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science, 2016, 352, 1535-1542.	6.0	408
56	The Reduction-insensitive Bonds of the MUC2 Mucin Are Isopeptide Bonds. Journal of Biological Chemistry, 2016, 291, 13580-13590.	1.6	41
57	The Densely O-Glycosylated MUC2 Mucin Protects the Intestine and Provides Food for the Commensal Bacteria. Journal of Molecular Biology, 2016, 428, 3221-3229.	2.0	137
58	Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles. Cell Host and Microbe, 2015, 17, 672-680.	5.1	179
59	Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR. Pflugers Archiv European Journal of Physiology, 2015, 467, 1403-1415.	1.3	23
60	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	2.0	519
61	New developments in goblet cell mucus secretion and function. Mucosal Immunology, 2015, 8, 712-719.	2.7	541
62	Quantitative Imaging of Gut Microbiota Spatial Organization. Cell Host and Microbe, 2015, 18, 478-488.	5.1	359
63	Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host and Microbe, 2015, 18, 582-592.	5.1	368
64	Hyper-osmolarity and calcium chelation: Effects on cystic fibrosis mucus. European Journal of Pharmacology, 2015, 764, 109-117.	1.7	14
65	Hypertonic saline releases the attached small intestinal cystic fibrosis mucus. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 69-75.	0.9	11
66	CD103+CD11b+ Dendritic Cells Induce Th17 T Cells in Muc2-Deficient Mice with Extensively Spread Colitis. PLoS ONE, 2015, 10, e0130750.	1.1	24
67	Altered Mucus Glycosylation in Core 1 O-Glycan-Deficient Mice Affects Microbiota Composition and Intestinal Architecture. PLoS ONE, 2014, 9, e85254.	1.1	114
68	Modified-Chitosan/siRNA Nanoparticles Downregulate Cellular CDX2 Expression and Cross the Gastric Mucus Barrier. PLoS ONE, 2014, 9, e99449.	1.1	23
69	Spontaneous Colitis in Muc2-Deficient Mice Reflects Clinical and Cellular Features of Active Ulcerative Colitis. PLoS ONE, 2014, 9, e100217.	1.1	93
70	AGR2, an Endoplasmic Reticulum Protein, Is Secreted into the Gastrointestinal Mucus. PLoS ONE, 2014, 9, e104186.	1.1	58
71	Proteomic Mucin Profiling for the Identification of Cystic Precursors of Pancreatic Cancer. Journal of the National Cancer Institute, 2014, 106, djt439.	3.0	49
72	Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut, 2014, 63, 281-291.	6.1	717

#	Article	IF	CITATIONS
73	Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences. Molecular and Cellular Proteomics, 2014, 13, 2277-2287.	2.5	32
74	Slc26a3 deficiency is associated with loss of colonic <scp>HCO</scp> ₃ ^{â[^]} secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiologica, 2014, 211, 161-175.	1.8	67
75	Multiple Enzyme Approach for the Characterization of Glycan Modifications on the C-Terminus of the Intestinal MUC2Mucin. Journal of Proteome Research, 2014, 13, 6013-6023.	1.8	17
76	Response. Journal of the National Cancer Institute, 2014, 106, dju330-dju330.	3.0	0
77	Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12396-12401.	3.3	159
78	Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis. EBioMedicine, 2014, 1, 46-57.	2.7	92
79	Is the Intestinal Goblet Cell a Major Immune Cell?. Cell Host and Microbe, 2014, 15, 251-252.	5.1	51
80	The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 2014, 260, 8-20.	2.8	895
81	Intestinal MUC2 Mucin Supramolecular Topology by Packing and Release Resting on D3 Domain Assembly. Journal of Molecular Biology, 2014, 426, 2567-2579.	2.0	36
82	Increased Understanding of the Biochemistry and Biosynthesis of MUC2 and Other Gel-Forming Mucins Through the Recombinant Expression of Their Protein Domains. Molecular Biotechnology, 2013, 54, 250-256.	1.3	39
83	The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 352-361.	8.2	1,026
84	Unfolding dynamics of the mucin <scp>SEA</scp> domain probed by force spectroscopy suggest that it acts as a cellâ€protective device. FEBS Journal, 2013, 280, 1491-1501.	2.2	33
85	Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes. American Journal of Physiology - Cell Physiology, 2013, 305, C457-C467.	2.1	20
86	Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. American Journal of Physiology - Renal Physiology, 2013, 305, G348-G356.	1.6	114
87	Mucus and the Goblet Cell. Digestive Diseases, 2013, 31, 305-309.	0.8	89
88	NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. American Journal of Physiology - Cell Physiology, 2013, 305, C121-C128.	2.1	38
89	Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin <i>O</i> -glycan patterns reveal a regiospecific distribution. American Journal of Physiology - Renal Physiology, 2013, 305, G357-G363.	1.6	153
90	Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. American Journal of Physiology - Renal Physiology, 2013, 305, G341-G347.	1.6	275

#	Article	IF	CITATIONS
91	Altered Innate Defenses in the Neonatal Gastrointestinal Tract in Response to Colonization by Neuropathogenic Escherichia coli. Infection and Immunity, 2013, 81, 3264-3275.	1.0	40
92	The goblet cell: a key player in ischaemia-reperfusion injury. Gut, 2013, 62, 188-189.	6.1	21
93	Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB). Journal of Biological Chemistry, 2013, 288, 14636-14646.	1.6	69
94	Dynamic Changes in Mucus Thickness and Ion Secretion during Citrobacter rodentium Infection and Clearance. PLoS ONE, 2013, 8, e84430.	1.1	44
95	Mucus Properties and Goblet Cell Quantification in Mouse, Rat and Human Ileal Peyer's Patches. PLoS ONE, 2013, 8, e83688.	1.1	46
96	Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology, 2012, 22, 1128-1139.	1.3	72
97	Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5645-5650.	3.3	265
98	Reply to Verdugo: Mucins form highly organized supramolecular structures. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	3
99	Perspectives on Mucus Properties and FormationLessons from the Biochemical World. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a014159-a014159.	2.9	59
100	Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biological Chemistry, 2012, 393, 1391-1403.	1.2	14
101	Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. Methods in Molecular Biology, 2012, 842, 229-235.	0.4	142
102	Glycosphingolipid composition of epithelial cells isolated along the villus axis of small intestine of a single human individual. Glycobiology, 2012, 22, 1721-1730.	1.3	53
103	An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. American Journal of Physiology - Renal Physiology, 2012, 302, G430-G438.	1.6	181
104	Proteomic Study of the Mucin Granulae in an Intestinal Goblet Cell Model. Journal of Proteome Research, 2012, 11, 1879-1890.	1.8	25
105	Role of mucus layers in gut infection and inflammation. Current Opinion in Microbiology, 2012, 15, 57-62.	2.3	368
106	Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. Journal of Experimental Medicine, 2012, 209, 1263-1272.	4.2	292
107	Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterology and Motility, 2012, 24, e381-91.	1.6	10
108	Ex Vivo Measurements of Mucus Secretion by Colon Explants. Methods in Molecular Biology, 2012, 842, 237-243.	0.4	9

7

#	Article	IF	CITATIONS
109	Analysis of Assembly of Secreted Mucins. Methods in Molecular Biology, 2012, 842, 109-121.	0.4	14
110	Function of the CysD domain of the gel-forming MUC2 mucin. Biochemical Journal, 2011, 436, 61-70.	1.7	78
111	Keeping Bacteria at a Distance. Science, 2011, 334, 182-183.	6.0	89
112	Importance and regulation of the colonic mucus barrier in a mouse model of colitis. American Journal of Physiology - Renal Physiology, 2011, 300, G327-G333.	1.6	302
113	Deficiency for the Metalloproteinase Meprin 1-Beta Enhances Severity of, and Delays Recovery From Acute DSS Colitis. Gastroenterology, 2011, 140, S-497-S-498.	0.6	Ο
114	Stromal IFN-Î ³ R-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection. PLoS ONE, 2011, 6, e22459.	1.1	78
115	Recombinant glycoprotein E produced in mammalian cells in large-scale as an antigen for varicella-zoster-virus serology. Journal of Virological Methods, 2011, 175, 53-59.	1.0	18
116	Identification and Quantification of Mucin Expression. Methods in Molecular Biology, 2011, 742, 127-141.	0.4	4
117	Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 2011, 68, 3635-3641.	2.4	404
118	O-glycosylation of MUC1 mucin in prostate cancer and the effects of its expression on tumor growth in a prostate cancer xenograft model. Tumor Biology, 2011, 32, 203-213.	0.8	17
119	Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflammatory Bowel Diseases, 2011, 17, 2299-2307.	0.9	243
120	CFTR anion channel modulates expression of human transmembrane mucin MUC3 through the PDZ protein GOPC. Journal of Cell Science, 2011, 124, 3074-3083.	1.2	25
121	The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4659-4665.	3.3	1,084
122	Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice. Journal of Clinical Investigation, 2011, 121, 1657-1666.	3.9	285
123	Sparkling water – bicarbonate for cervix and cystic fibrosis. Journal of Physiology, 2010, 588, 2685-2685.	1.3	6
124	Comparison of Methods for Profiling O-Glycosylation. Molecular and Cellular Proteomics, 2010, 9, 719-727.	2.5	136
125	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes, 2010, 1, 51-54.	4.3	173
126	Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Beneficial Microbes, 2010, 1, 343-350.	1.0	27

#	Article	IF	CITATIONS
127	Enhanced Detection of Sialylated and Sulfated Glycans with Negative Ion Mode Nanoliquid Chromatography/Mass Spectrometry at High pH. Analytical Chemistry, 2010, 82, 1470-1477.	3.2	28
128	Bacteria Penetrate the Inner Mucus Layer before Inflammation in the Dextran Sulfate Colitis Model. PLoS ONE, 2010, 5, e12238.	1.1	288
129	O-Glycans on Recombinant MUC1 Produced in CHO K1 Cells Become Less Sialylated with Increased Protein Productivity, as Determined by LC-ESI MS. , 2010, , 285-288.		Ο
130	Localization of O-glycans in MUC1 glycoproteins using electron-capture dissociation fragmentation mass spectrometry. Glycobiology, 2009, 19, 375-381.	1.3	35
131	A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology, 2009, 19, 756-766.	1.3	216
132	Molecular Evolution of Specific Human Antibody against MUC1 Mucin Results in Improved Recognition of the Antigen on Tumor Cells. Tumor Biology, 2009, 30, 221-231.	0.8	10
133	Cervical mucins carry α(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis. Glycoconjugate Journal, 2009, 26, 1125-1134.	1.4	33
134	Sensitive Liquid Chromatography-Electrospray Mass Spectrometry Allows for the Analysis of the O-Glycosylation of Immunoprecipitated Proteins from Cells or Tissues: Application to MUC1 Glycosylation in Cancer. Journal of Proteome Research, 2009, 8, 538-545.	1.8	25
135	Proteomic Analyses of the Two Mucus Layers of the Colon Barrier Reveal That Their Main Component, the Muc2 Mucin, Is Strongly Bound to the Fcgbp Protein. Journal of Proteome Research, 2009, 8, 3549-3557.	1.8	188
136	Mapping of the 45M1 epitope to the Câ€ŧerminal cysteineâ€ŧich part of the human MUC5AC mucin. FEBS Journal, 2008, 275, 481-489.	2.2	40
137	CD43 promotes cell growth and helps to evade FAS-mediated apoptosis in non-hematopoietic cancer cells lacking the tumor suppressors p53 or ARF. Oncogene, 2008, 27, 1705-1715.	2.6	19
138	The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochemical Journal, 2008, 410, 283-289.	1.7	39
139	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15064-15069.	3.3	1,657
140	The gastric mucus layers: constituents and regulation of accumulation. American Journal of Physiology - Renal Physiology, 2008, 295, G806-G812.	1.6	88
141	Large Scale Identification of Proteins, Mucins, and Their O-Glycosylation in the Endocervical Mucus during the Menstrual Cycle. Molecular and Cellular Proteomics, 2007, 6, 708-716.	2.5	156
142	Gel-forming mucins appeared early in metazoan evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16209-16214.	3.3	253
143	Internal Repeat Variability in Mucin Sequences. Biomacromolecules, 2006, 7, 3542-3543.	2.6	2
144	Cleavage in the GDPH sequence of the C-terminal cysteine-rich part of the human MUC5AC mucin. Biochemical Journal, 2006, 399, 121-129.	1.7	52

#	Article	IF	CITATIONS
145	Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nature Structural and Molecular Biology, 2006, 13, 71-76.	3.6	233
146	An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics, 2006, 7, 197.	1.2	63
147	Increased levels of mucins in the cystic fibrosis mouse small intestine, and modulator effects of the Muc1 mucin expression. American Journal of Physiology - Renal Physiology, 2006, 291, G203-G210.	1.6	53
148	The ST6GalNAc-I Sialyltransferase Localizes throughout the Golgi and Is Responsible for the Synthesis of the Tumor-associated Sialyl-Tn O-Glycan in Human Breast Cancer. Journal of Biological Chemistry, 2006, 281, 3586-3594.	1.6	210
149	Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9298-9303.	3.3	240
150	Biosynthesis and Secretion of Mucins, Especially the MUC2 Mucin, in Relation to Cystic Fibrosis. Advances in Experimental Medicine and Biology, 2005, , 169-178.	0.8	1
151	Shedding and Î ³ -secretase-mediated intramembrane proteolysis of the mucin-type molecule CD43. Biochemical Journal, 2005, 387, 377-384.	1.7	44
152	Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. Glycobiology, 2005, 15, 1002-1007.	1.3	42
153	Recombinant Tumor-Associated MUC1 Glycoprotein Impairs the Differentiation and Function of Dendritic Cells. Journal of Immunology, 2005, 174, 7764-7772.	0.4	82
154	A MUC1 tandem repeat reporter protein produced in CHO-K1 cells has sialylated core 1 O-glycans and becomes more densely glycosylated if coexpressed with polypeptide-GalNAc-T4 transferase. Glycobiology, 2004, 15, 177-191.	1.3	32
155	Bioinformatic identification of polymerizing and transmembrane mucins in the puffer fish Fugu rubripes. Glycobiology, 2004, 14, 521-527.	1.3	37
156	Bcr (breakpoint cluster region) protein binds to PDZ-domains of scaffold protein PDZK1 and vesicle coat protein Mint3. Journal of Cell Science, 2004, 117, 5535-5541.	1.2	22
157	CD43 has a functional NLS, interacts with β-catenin, and affects gene expression. Biochemical and Biophysical Research Communications, 2004, 316, 12-17.	1.0	32
158	MUC1 can interact with adenomatous polyposis coli in breast cancer. Biochemical and Biophysical Research Communications, 2004, 316, 364-369.	1.0	19
159	Alternative splicing of the human MUC2 gene. Archives of Biochemistry and Biophysics, 2004, 421, 21-33.	1.4	16
160	Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium. Journal of Biotechnology, 2004, 110, 51-62.	1.9	60
161	Mucins and their O-Glycans from human bronchial epithelial cell cultures. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L824-L834.	1.3	72
162	An Autocatalytic Cleavage in the C Terminus of the Human MUC2 Mucin Occurs at the Low pH of the Late Secretory Pathway. Journal of Biological Chemistry, 2003, 278, 13944-13951.	1.6	80

#	Article	IF	CITATIONS
163	Default biosynthesis pathway for blood group-related glycolipids in human small intestine as defined by structural identification of linear and branched glycosylceramides in a group O Le(a-b-) nonsecretor. Glycobiology, 2003, 14, 1-12.	1.3	28
164	Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochemical Journal, 2003, 376, 677-686.	1.7	83
165	Novel MUC1 splice variants contribute to mucin overexpression in CFTR-deficient mice. American Journal of Physiology - Renal Physiology, 2003, 284, G853-G862.	1.6	24
166	The recombinant C-terminus of the human MUC2 mucin forms dimers in Chinese-hamster ovary cells and heterodimers with full-length MUC2 in LS 174T cells. Biochemical Journal, 2003, 372, 335-345.	1.7	57
167	The Leukocyte Antigen CD43 Is Expressed in Different Cell Lines of Nonhematopoietic Origin. Tumor Biology, 2002, 23, 193-201.	0.8	26
168	The salivary mucin MG1 (MUC5B) carries a repertoire of unique oligosaccharides that is large and diverse. Glycobiology, 2002, 12, 1-14.	1.3	117
169	The N Terminus of the MUC2 Mucin Forms Trimers That Are Held Together within a Trypsin-resistant Core Fragment. Journal of Biological Chemistry, 2002, 277, 47248-47256.	1.6	166
170	Intestinal mucins from cystic fibrosis mice show increased fucosylation due to an induced Fuc $\hat{l}\pm 1$ -2 glycosyltransferase. Biochemical Journal, 2002, 367, 609-616.	1.7	50
171	Blood Group A Glycosyltransferase Occurring as Alleles with High Sequence Difference Is Transiently Induced during aNippostrongylus brasiliensis Parasite Infection. Journal of Biological Chemistry, 2002, 277, 15044-15052.	1.6	23
172	Two glycosylation alterations of mouse intestinal mucins due to infection caused by the parasite Nippostrongylus brasiliensis. Glycoconjugate Journal, 2002, 19, 67-75.	1.4	35
173	Tumor cell MUC1 and CD43 are glycosylated differently with sialyl-Lewis a and x epitopes and show variable interactions with E-selectin under physiological flow conditions. Glycoconjugate Journal, 2001, 18, 925-930.	1.4	30
174	Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology, 2001, 11, 633-644.	1.3	122
175	Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochemical Journal, 2000, 350, 805-814.	1.7	56
176	Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochemical Journal, 2000, 350, 805.	1.7	23
177	Comparison study on expression of RMUC2 and RMUC3 in rat with ulcerative colitis. Gastroenterology, 2000, 118, A221.	0.6	0
178	Sequencing of Sulfated Oligosaccharides from Mucins by Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry. Analytical Chemistry, 2000, 72, 4543-4549.	3.2	80
179	Liquid chromatography–electrospray mass spectrometry as a tool for the analysis of sulfated oligosaccharides from mucin glycoproteins. Journal of Chromatography A, 1999, 854, 131-139.	1.8	90
180	Lack of evidence for an immunosuppressive role for MUC1. Cancer Immunology, Immunotherapy, 1999, 48, 22-28.	2.0	14

#	Article	IF	CITATIONS
181	Lithium evokes a more pronounced natriuresis when administered orally than when given intravenously to salt-depleted rats. Pflugers Archiv European Journal of Physiology, 1999, 438, 159-164.	1.3	10
182	Detection of cd43 (leukosialin) in colon adenoma and adenocarcinoma by novel monoclonal antibodies against its intracellular domain. , 1999, 82, 52-58.		21
183	Different O-glycosylation of respiratory mucin glycopeptides from a patient with cystic fibrosis. Glycoconjugate Journal, 1998, 15, 823-833.	1.4	20
184	Deglycosylation by gaseous hydrogen fluoride of mucus glycoproteins immobilized on nylon membranes and in microtiter wells. Glycoconjugate Journal, 1998, 15, 749-755.	1.4	5
185	Human Low-Molecular-Weight Salivary Mucin Expresses the Sialyl Lewisx Determinant and Has L-Selectin Ligand Activity. Biochemistry, 1998, 37, 4916-4927.	1.2	58
186	Dimerization of the Human MUC2 Mucin in the Endoplasmic Reticulum Is Followed by a N-Glycosylation-dependent Transfer of the Mono- and Dimers to the Golgi Apparatus. Journal of Biological Chemistry, 1998, 273, 18857-18863.	1.6	119
187	O-Glycosylated MUC2 Monomer and Dimer from LS 174T Cells Are Water-soluble, whereas Larger MUC2 Species Formed Early during Biosynthesis Are Insoluble and Contain Nonreducible Intermolecular Bonds. Journal of Biological Chemistry, 1998, 273, 18864-18870.	1.6	83
188	Reactivity of Antibodies with Highly Glycosylated MUC1 Mucins from Colon Carcinoma Cells and Bile. Tumor Biology, 1998, 19, 122-126.	0.8	13
189	Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin. Biochemical Journal, 1998, 335, 381-387.	1.7	46
190	Comparison of Sialyl-Lewis a-Carrying CD43 and MUC1 Mucins Secreted from a Colon Carcinoma Cell Line for E-Selectin Binding and Inhibition of Leukocyte Adhesion. Tumor Biology, 1997, 18, 175-187.	0.8	36
191	The Glycosylation of Rat Intestinal Muc2 Mucin Varies between Rat Strains and the Small and Large Intestine. Journal of Biological Chemistry, 1997, 272, 27025-27034.	1.6	51
192	Glycosylation differences between pig gastric mucin populations: a comparative study of the neutral oligosaccharides using mass spectrometry. Biochemical Journal, 1997, 326, 911-917.	1.7	64
193	Mucus glycoproteins from pig gastric mucosa: identification of different mucin populations from the surface epithelium. Biochemical Journal, 1997, 326, 903-910.	1.7	57
194	Colon Adenoma and Cancer Cells Aberrantly Express the Leukocyte-Associated Sialoglycoprotein CD43. Biochemical and Biophysical Research Communications, 1997, 238, 612-616.	1.0	25
195	Binding of enterotoxigenicEscherichia colito isolated enterocytes and intestinal mucus. Microbial Pathogenesis, 1997, 23, 335-346.	1.3	23
196	A MUC1 Mucin Secreted from a Colon Carcinoma Cell Line Inhibits Target Cell Lysis by Natural Killer Cells. Cellular Immunology, 1997, 176, 158-165.	1.4	69
197	Binding of Human Enterotoxigenic Escherichia Coli Expressing Coli Surface Antigen 6 to Rabbit Intestinal Enterocytes and Glycoproteins. Advances in Experimental Medicine and Biology, 1997, 412, 257-258.	0.8	1
198	Sialyl-Lewis a Carrying MUC1 and CD43 Mucin-Type Glycoproteins Expressed and Secreted from Colon Carcinoma Cells. A Role in Tumor Progression?. Trends in Glycoscience and Glycotechnology, 1997, 9, 211-222.	0.0	0

#	Article	IF	CITATIONS
199	Chromosomal mapping of three mucin genes in the rat. Mammalian Genome, 1996, 7, 248-250.	1.0	4
200	Sulphated Mucin Oligosaccharides from Porcine Small Intestine Analysed by Four-Sector Tandem Mass Spectrometry. , 1996, 31, 560-572.		55
201	Distinct sub-populations of carcinoma-associated MUC1 mucins as detected by the monoclonal antibody 9H8 and antibodies against the sialyl-Lewis a and sialyl-Lewis x epitopes in the circulation of breast-cancer patients. , 1996, 66, 617-623.		22
202	Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. Journal of Cellular Biochemistry, 1996, 60, 538-549.	1.2	84
203	Molecular characterization of the large heavily glycosylated domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconjugate Journal, 1996, 13, 823-831.	1.4	48
204	The transcripts of the apomucin genesMUC2, MUC4, andMUC5AC are large and appear as distinct bands. Glycoconjugate Journal, 1996, 13, 833-837.	1.4	8
205	Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl‣ewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HLâ€60 leukocyte adhesion to Eâ€selectinâ€expressing endothelial cells. Journal of Cellular Biochemistry, 1996, 60, 538-549.	1.2	1
206	The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the â€~insoluble' mucin of rat small intestine. Biochemical Journal, 1995, 308, 873-880.	1.7	70
207	Renal sodium excretion after oral or intravenous sodium loading in sodiumâ€deprived normotensive and spontaneously hypertensive rats. Acta Physiologica Scandinavica, 1995, 153, 169-177.	2.3	21
208	The intestinal tract and the pathophysiology of arterial hypertension: an experimental study on Dahl rats. Acta Physiologica Scandinavica, 1995, 155, 137-146.	2.3	13
209	Analysis of Monosaccharide Composition of Mucin Oligosaccharide Alditols by High-Performance Anion-Exchange Chromatography. Analytical Biochemistry, 1995, 224, 538-541.	1.1	45
210	Strategy for the investigation of O-linked oligosaccharides from mucins based on the separation into neutral, sialic acid- and sulfate-containing species. Glycoconjugate Journal, 1995, 12, 69-76.	1.4	35
211	Expression of the Leukocyte-associated Sialoglycoprotein CD43 by a Colon Carcinoma Cell Line. Journal of Biological Chemistry, 1995, 270, 13688-13692.	1.6	45
212	Partial Purification of a Factor from the Feline Small Intestine Causing NatriuresisIn Vivoand Inhibiting Rubidium Uptake into Renal CellsIn Vitro. Blood Pressure, 1995, 4, 117-125.	0.7	9
213	The Small Intestine, Salt Intake and Arterial Hypertension. Blood Pressure, 1995, 4, 77-79.	0.7	7
214	Structure and genetic polymorphism of blood group A-active glycosphingolipids of the rat large intestine. Lipids and Lipid Metabolism, 1995, 1255, 131-140.	2.6	9
215	Inhibitory effects of theophylline, terbutaline, and hydrocortisone on leukotriene B4 and C4 generation by human leukocytes in vitro. Pediatric Pulmonology, 1994, 18, 129-134.	1.0	5
216	A secreted mucin carrying Sialyl-Lewis a from colon carcinoma cells binds to E-selectin and inhibits HL-60 cell adhesion. International Journal of Cancer, 1994, 59, 823-829.	2.3	27

#	Article	IF	CITATIONS
217	High-temperature gas chromatography and gas chromatography-mass spectrometry of glycoprotein and glycosphingolipid oligosaccharides. Molecular Biotechnology, 1994, 1, 165-180.	1.3	9
218	Defective inhibition by dexamethasone of leukotriene B4 and C4 production by leukocytes in patients with cystic fibrosis. Prostaglandins Leukotrienes and Essential Fatty Acids, 1994, 51, 407-410.	1.0	15
219	Molecular Cloning of a cDNA Coding for a Region of an Apoprotein from the "Insoluble" Mucin Complex of Rat Small Intestine. Biochemical and Biophysical Research Communications, 1994, 198, 181-190.	1.0	48
220	Effects of Pancreatic and Snake Venom Phospholipase A2 on the Generation of Leukotriene B4 and C4 by Human Leukocytes in Vitro. Pancreas, 1994, 9, 37-41.	0.5	8
221	S20.3 Molecular cloning and partial sequencing of the apoprotein for the insoluble mucin of the rat small intestine. Glycoconjugate Journal, 1993, 10, 342-342.	1.4	0
222	S20.9 An insoluble mucin complex from rat small intestine ? Characterization of two different glycosylated domains. Glycoconjugate Journal, 1993, 10, 344-344.	1.4	2
223	S20.15 Novel monoclonal antibody recognizing the MUC1 apoprotein among highly glycosylated sialyl-Lea expressing glycoproteins from colon carcinoma cells. Glycoconjugate Journal, 1993, 10, 346-347.	1.4	Ο
224	Gas Chromatography and Gas Chromatography–Mass Spectrometry of Glycoprotein Oligosaccharides. , 1993, 14, 47-54.		12
225	An Intestinal Natriuretic Factor. Journal of Cardiovascular Pharmacology, 1993, 22, S60-S62.	0.8	4
226	Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. Journal of Biological Chemistry, 1993, 268, 18771-81.	1.6	92
227	N-linked glycopeptides with blood group determinants lacking neuraminic acid from the epithelial cells of rat small and large intestine. FEBS Journal, 1992, 203, 285-293.	0.2	6
228	Is there an intestinal natriuretic factor?*. Acta Physiologica Scandinavica, 1991, 141, 19-25.	2.3	11
229	Analysis of sialic acid-containing mucin oligosaccharides from porcine small intestine by high-temperature gas chromatography-mass spectrometry of their dimethylamides. Carbohydrate Research, 1991, 221, 179-189.	1.1	22
230	Structure and Properties of Rat Gastrointestinal Mucins. , 1991, , 23-28.		0
231	[39] High-mass gas chromatography-mass spectrometry of permethylated oligosaccharides. Methods in Enzymology, 1990, 193, 733-738.	0.4	10
232	Transient expression of type 2 chain in A-active hexaglycosylceramide of rat small intestine at weaning time. Demonstration by affinity chromatography and ceramide glycanase hydrolysis of A-active glycosphingolipids followed by gas chromatography and mass spectrometry of permethylated hexasaccharides. Archives of Biochemistry and Biophysics, 1990, 282, 141-146.	1.4	6
233	Regional differences in the appearance of adult-type glycosphingolipids in the small intestine of inbred rats at weaning time. Archives of Biochemistry and Biophysics, 1990, 282, 147-151.	1.4	1
234	Glycosphingolipid receptors for Pseudomonas aeruginosa. Infection and Immunity, 1990, 58, 2361-2366.	1.0	90

#	Article	IF	CITATIONS
235	The use of gas chromatography and gas chromatography-mass spectrometry for the characterization of permethylated oligosaccharides with molecular mass up to 2300. Analytical Biochemistry, 1989, 182, 438-446.	1.1	52
236	Characterization of glycosphingolipid mixtures with up to ten sugars by gas chromatography and gas chromatography-mass spectrometry as permethylated oligosaccharides and ceramides released by ceramide glycanase. Biochemistry, 1989, 28, 6672-6678.	1.2	55
237	Novel Polyfucosylated N-Linked Glycopeptides with Blood Group A, H, X, and Y Determinants from Human Small Intestinal Epithelial Cells. Journal of Biological Chemistry, 1989, 264, 5720-5735.	1.6	91
238	Gas chromatography and gas chromatography/mass spectrometry for the characterization of complex mixtures of large oligosaccharides. Journal of High Resolution Chromatography, 1988, 11, 820-824.	2.0	6
239	Cystic fibrosis and chloride-secreting diarrhoea. Nature, 1988, 333, 711-711.	13.7	24
240	Only trace amounts of fatty acids are found in pure mucus glycoproteins. Archives of Biochemistry and Biophysics, 1988, 266, 197-200.	1.4	15
241	The glycosphingolipid composition of the placenta of a blood group P fetus delivered by a blood group Pk1 woman and analysis of the anti-globoside antibodies found in maternal serum. Archives of Biochemistry and Biophysics, 1988, 260, 168-176.	1.4	25
242	Intestinal-type glycosphingolipids in urine from patients with enterocutaneous urinary diversions. Archives of Biochemistry and Biophysics, 1988, 263, 394-400.	1.4	0
243	A blood group B-like pentaglycosylceramide is the major complex glycosphingolipid of the Madin-Darby canine kidney epithelial cell line I (MDCK I). Biochimica Et Biophysica Acta - General Subjects, 1988, 967, 87-91.	1.1	4
244	Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells Journal of Experimental Medicine, 1988, 168, 267-277.	4.2	159
245	Structural Aspects of Blood Group Glycosphingolipids in the Gastrointestinal Tract. Advances in Experimental Medicine and Biology, 1988, 228, 465-494.	0.8	28
246	The Chemical Basis for Expression of the Sialyl-Lea Antigen. Advances in Experimental Medicine and Biology, 1988, 228, 657-676.	0.8	14
247	A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex Journal of Biological Chemistry, 1988, 263, 16283-16290.	1.6	119
248	Mucins obtained from patients with enterocutaneous urinary diversions. Scandinavian Journal of Clinical and Laboratory Investigation, 1988, 48, 633-640.	0.6	7
249	Rapid characterization of mucin oligosaccharides from rat small intestine with gas chromatography-mass spectrometry. FEBS Letters, 1987, 226, 23-27.	1.3	19
250	The mono- and difucosyl blood group B glycosphingolipids of rat large intestine differ in type of core saccharide. Biochimica Et Biophysica Acta - General Subjects, 1987, 926, 79-86.	1.1	14
251	Developmental changes of blood group A-active glycosphingolipids with type 1 and type 2 chains in rat small intestine. Glycoconjugate Journal, 1987, 4, 59-71.	1.4	17
252	Application of a simple methylation procedure for the analyses of glycosphingolipids. Carbohydrate Research, 1987, 161, 281-290.	1.1	111

#	Article	IF	CITATIONS
253	Characterization of neutral blood group B-active glycosphingolipids of rat gastric mucosa. A novel type of blood group active glycosphingolipid based on isogloboside Journal of Biological Chemistry, 1987, 262, 13135-13141.	1.6	29
254	Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor Journal of Biological Chemistry, 1987, 262, 6758-6765.	1.6	156
255	Structures of blood group glycosphingolipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO, Le and Se phenotype of the donor. Journal of Biological Chemistry, 1987, 262, 6758-65.	1.6	138
256	Characterization of neutral blood group B-active glycosphingolipids of rat gastric mucosa. A novel type of blood group active glycosphingolipid based on isogloboside. Journal of Biological Chemistry, 1987, 262, 13135-41.	1.6	23
257	Separation and partial sequence analysis of blood group A-active oligosaccharides by affinity chromatography using monoclonal antibodies. Archives of Biochemistry and Biophysics, 1986, 248, 677-683.	1.4	19
258	A novel sulfoglycosphingolipid of mouse small intestine, IV3-sulfogangliotetraosylceramide, demonstrated by negative ion fast atom bombardment mass spectrometry Journal of Biological Chemistry, 1986, 261, 1440-1444.	1.6	31
259	Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO Journal, 1986, 5, 483-9.	3.5	43
260	Carbohydrate-specific adhesion of bacteria to thin-layer chromatograms: A rationalized approach to the study of host cell glycolipid receptors. Analytical Biochemistry, 1985, 146, 158-163.	1.1	170
261	The Specific Glycosphingolipid Composition of Human Ureteral Epithelial Cells1. Journal of Biochemistry, 1985, 98, 1169-1180.	0.9	53
262	Detection of blood group type glycosphingolipid antigens on thin-layer plates using polyclonal antisera. Journal of Immunological Methods, 1985, 83, 37-42.	0.6	68
263	Biosynthesis of the cancer-associated sialyl-Lea antigen Journal of Biological Chemistry, 1985, 260, 9388-9392.	1.6	106
264	Specificity of binding of a strain of uropathogenic Escherichia coli to Gal alpha 1—-4Gal-containing glycosphingolipids Journal of Biological Chemistry, 1985, 260, 8545-8551.	1.6	278
265	A novel approach to the study of glycolipid receptors for viruses. FEBS Letters, 1984, 170, 15-18.	1.3	66
266	Lewis blood group antigens defined by monoclonal anti-colon carcinoma antibodies. Archives of Biochemistry and Biophysics, 1984, 233, 161-168.	1.4	78
267	Glycosphingolipid patterns of the epithelial and non-epithelial compartments of rat large intestine. Lipids and Lipid Metabolism, 1984, 792, 281-292.	2.6	30
268	Sequencing of large oligosaccharides by direct inlet mass spectrometry. Application to cell surface glycolipids. International Journal of Mass Spectrometry and Ion Physics, 1983, 48, 113-116.	1.3	6
269	The subcellular localization of the glycosphingolipids in the epithelial cells of rat small intestine. Biochimica Et Biophysica Acta - Biomembranes, 1983, 733, 295-299.	1.4	26
270	Isoglobotriaosylceramideand the forssman glycolipid of dog small intestine occupy separate tissue compartments and differ in ceramide composition. Lipids and Lipid Metabolism, 1983, 750, 214-216.	2.6	43

#	Article	IF	CITATIONS
271	The Preparative Separation of Sialic Acid-Containing Lipids from Sulphate Group-Containing Glycolipids from Small Intestine of Different Animals. Analysis by Thin-Layer Chromatography and Detection of Novel Species1. Journal of Biochemistry, 1983, 93, 1473-1485.	0.9	33
272	The structure of two blood group A-active glycosphingolipids with 12 sugars and a branched chain present in the epithelial cells of rat small intestine Journal of Biological Chemistry, 1983, 258, 9612-9615.	1.6	20
273	Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay Journal of Biological Chemistry, 1983, 258, 4091-4097.	1.6	154
274	Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay. Journal of Biological Chemistry, 1983, 258, 4091-7.	1.6	140
275	Studies on differentiating epithelial cells of rat small intestine. Lipids and Lipid Metabolism, 1982, 710, 415-427.	2.6	25
276	Structural characterization of glycolipids of rat small intestine having one to eight hexoses in a linear sequence. Archives of Biochemistry and Biophysics, 1982, 213, 708-725.	1.4	19
277	Gangliotetraosylceramide is a major glycolipid of epithelial cells of mouse small intestine. FEBS Letters, 1982, 139, 291-294.	1.3	39
278	Structural identification of two ten-sugar branched chain glycosphingolipids of blood group H type present in epithelial cells of rat small intestine. Journal of Biological Chemistry, 1982, 257, 50-9.	1.6	32
279	Isolation and partial characterization of blood group A and H active glycosphingolipids of rat small intestine. Journal of Biological Chemistry, 1982, 257, 906-12.	1.6	37
280	Glycosphingolipids of rat tissues. Different composition of epithelial and nonepithelial cells of small intestine. Journal of Biological Chemistry, 1982, 257, 557-68.	1.6	86
281	Glycosphingolipids and the differentiation of intestinal epithelium. Experimental Cell Research, 1981, 135, 1-13.	1.2	91
282	Sequencing of oligosaccharides by mass spectrometry applied on a 12-sugar glycolipid. FEBS Letters, 1981, 124, 299-303.	1.3	28
283	Preparation and characteristics of liposomes containing glycosphingolipids with blood group activity. Adaptation for an improved immunologic micromethod based on inhibition of haemagglutination. Journal of Immunological Methods, 1981, 44, 223-234.	0.6	16
284	Separation and Characterization of Hematosides with Different Sialic Acids and Ceramides from Rat Small Intestine. Different Composition of Epithelial Cells versus Non-Epithelial Tissue and of Duodenum versus Jejunum-Ileum1. Journal of Biochemistry, 1981, 90, 909-921.	0.9	29
285	Blood Group Type Glycosphingolipids from the Small Intestine of Different Animals Analysed by Mass Spectrometry and Thin-Layer Chromatography. A Note on Species Diversity12. Journal of Biochemistry, 1981, 90, 589-609.	0.9	64
286	Glycolipids of Rat Small Intestine with Special Reference to Epithelial Cells in Relation to Differentiation. ACS Symposium Series, 1980, , 79-104.	0.5	9
287	Hydrodynamic properties of solubilized (Na+ + K+)-ATPase from rectal glands of Squalus acanthias. Biochimica Et Biophysica Acta - Biomembranes, 1980, 603, 1-12.	1.4	79
288	Glycolipids of rat large intestine characterization of a novel blood group B-active tetraglycosylceramide absent from small intestine. Lipids and Lipid Metabolism, 1980, 620, 270-280.	2.6	27

#	Article	IF	CITATIONS
289	Glycolipids of rat small intestine. Lipids and Lipid Metabolism, 1980, 617, 85-96.	2.6	27
290	Human blood group a-positive and -negative strains of rat. Chemical basis as shown by fucolipids of small intestine. FEBS Letters, 1980, 114, 51-56.	1.3	27
291	Demonstration of complexity of the glycosphingolipid fraction of rat small intestine. Biochemical and Biophysical Research Communications, 1980, 95, 416-422.	1.0	11
292	Selected ion monitoring of glycosphingolipid mixtures. Identification of several blood group type glycolipids in the small intestine of an individual rabbit. Biomedical Mass Spectrometry, 1979, 6, 231-241.	1.8	91
293	The lipid composition of the electric organ of the ray, Torpedo marmorata, with specific reference to sulfatides and Na+-K+-ATPase Journal of Lipid Research, 1979, 20, 509-518.	2.0	25
294	Structure determination of blood group type glycolipids of cat small intestine by mass fragmentography. FEBS Letters, 1978, 89, 42-46.	1.3	26