
Jinfeng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small, 2022, 18, e2106215.	10.0	61
2	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels (Small 6/2022). Small, 2022, 18, .	10.0	0
3	A Fluorescent "Turn-On―Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterials, 2022, 12, 1262.	4.1	4
4	Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials, 2021, 268, 120557.	11.4	127
5	Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Materials Horizons, 2021, 8, 571-576.	12.2	48
6	Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horizons, 2021, 6, 177-185.	8.0	71
7	Polymeric nanomaterials for targeting the cellular suborganelles. , 2021, , 267-290.		2
8	Hollow mesoporous polyaniline nanoparticles with high drug payload and robust photothermal capability for cancer combination therapy. Chinese Journal of Chemical Engineering, 2021, 38, 221-228.	3.5	6
9	Iron Self-Boosting Polymer Nanoenzyme for Low-Temperature Photothermal-Enhanced Ferrotherapy. ACS Applied Materials & Interfaces, 2021, 13, 30274-30283.	8.0	35
10	Construction of Structurally Rigid Azulen-6-ones via Migratory Rearrangement of Spirocycles and Their Photophysical Studies. Organic Letters, 2021, 23, 8662-8667.	4.6	0
11	Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metalâ€Free Luminophores for Biomedical Applications. Advanced Science, 2021, 8, e2102970.	11.2	104
12	Coordinating bioorthogonal reactions with two tumor-microenvironment-responsive nanovehicles for spatiotemporally controlled prodrug activation. Chemical Science, 2020, 11, 2155-2160.	7.4	22
13	Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities. Accounts of Chemical Research, 2020, 53, 276-287.	15.6	59
14	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 2018-2022.	13.8	226
15	Molecularly Engineered Macrophageâ€Đerived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie - International Edition, 2020, 59, 4068-4074.	13.8	164
16	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. ACS Nano, 2020, 14, 9917-9928.	14.6	101
17	Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4816-4833.	5.2	66
18	Curcumin in antidepressant treatments: An overview of potential mechanisms, preâ€clinical/clinical trials and ongoing challenges. Basic and Clinical Pharmacology and Toxicology, 2020, 127, 243-253.	2.5	34

JINFENG ZHANG

#	Article	IF	CITATIONS
19	Europium-Doped Nanoparticles for Cellular Luminescence Lifetime Imaging <i>via</i> Multiple Manipulations of Aggregation State. ACS Applied Bio Materials, 2020, 3, 5103-5110.	4.6	12
20	A Self-Assembled α-Synuclein Nanoscavenger for Parkinson's Disease. ACS Nano, 2020, 14, 1533-1549.	14.6	71
21	Different Strategies for Organic Nanoparticle Preparation in Biomedicine. , 2020, 2, 531-549.		60
22	A Biocompatible Free Radical Nanogenerator with Realâ€īme Monitoring Capability for High Performance Sequential Hypoxic Tumor Therapy. Advanced Functional Materials, 2019, 29, 1903436.	14.9	83
23	MnCaCs-Biomineralized Oncolytic Virus for Bimodal Imaging-Guided and Synergistically Enhanced Anticancer Therapy. Nano Letters, 2019, 19, 8002-8009.	9.1	41
24	Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41051-41061.	8.0	73
25	Dual Fenton Catalytic Nanoreactor for Integrative Type-I and Type-II Photodynamic Therapy Against Hypoxic Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3854-3860.	4.6	38
26	Plant-Derived Single-Molecule-Based Nanotheranostics for Photoenhanced Chemotherapy and Ferroptotic-Like Cancer Cell Death. ACS Applied Bio Materials, 2019, 2, 2643-2649.	4.6	9
27	Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells. Analytical Chemistry, 2019, 91, 15726-15731.	6.5	46
28	Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. Nano Letters, 2019, 19, 658-665.	9.1	37
29	Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano, 2019, 13, 839-846.	14.6	77
30	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie - International Edition, 2018, 57, 12473-12477.	13.8	171
31	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angewandte Chemie, 2018, 130, 12653-12657.	2.0	49
32	Biocompatible semiconducting polymer nanoparticles as robust photoacoustic and photothermal agents revealing the effects of chemical structure on high photothermal conversion efficiency. Biomaterials, 2018, 181, 92-102.	11.4	71
33	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 5699-5708.	8.0	129
34	Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. ACS Applied Materials & Interfaces, 2017, 9, 7331-7338.	8.0	91
35	Biocompatible D–A Semiconducting Polymer Nanoparticle with Lightâ€Harvesting Unit for Highly Effective Photoacoustic Imaging Guided Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1605094.	14.9	188
36	Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Research, 2017, 10, 3113-3123.	10.4	246

JINFENG ZHANG

#	Article	IF	CITATIONS
37	Highly stable red-emitting polymer dots for cellular imaging. Nanotechnology, 2017, 28, 285102.	2.6	8
38	Degradable Hollow Mesoporous Silicon/Carbon Nanoparticles for Photoacoustic Imaging-Guided Highly Effective Chemo-Thermal Tumor Therapy <i>in Vitro</i> and <i>in Vivo</i> . Theranostics, 2017, 7, 3007-3020.	10.0	78
39	Self-Assembly of Electron Donor–Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging. ACS Applied Materials & Interfaces, 2016, 8, 11355-11365.	8.0	56
40	Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 21798-21805.	8.0	11
41	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	4.1	68
42	Spectroscopic study on the impact of methylammonium iodide loading time on the electronic properties in perovskite thin films. Journal of Materials Chemistry A, 2016, 4, 561-567.	10.3	50
43	Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging. ACS Applied Materials & Interfaces, 2015, 7, 26266-26274.	8.0	122
44	Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7, 17299-17305.	5.6	160
45	Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale, 2015, 7, 13503-13510.	5.6	139
46	Highly stable organic fluorescent nanorods for living-cell imaging. Nano Research, 2015, 8, 2380-2389.	10.4	49
47	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2015, 9, 9741-9756.	14.6	149
48	Preparation and Size Control of Sub-100 nm Pure Nanodrugs. Nano Letters, 2015, 15, 313-318.	9.1	82
49	A recyclable carbon nanoparticle-based fluorescent probe for highly selective and sensitive detection of mercapto biomolecules. Journal of Materials Chemistry B, 2015, 3, 127-134.	5.8	79
50	Aggregation-Induced Near-Infrared Absorption of Squaraine Dye in an Albumin Nanocomplex for Photoacoustic Tomography in Vivo. ACS Applied Materials & Interfaces, 2014, 6, 17985-17992.	8.0	47
51	Carbon Nanoparticle-based Ratiometric Fluorescent Sensor for Detecting Mercury Ions in Aqueous Media and Living Cells. ACS Applied Materials & Interfaces, 2014, 6, 21270-21278.	8.0	144
52	A reticuloendothelial system-stealthy dye–albumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging. RSC Advances, 2014, 4, 6120.	3.6	15
53	Micro―and Nanotechnologies for Intracellular Delivery. Small, 2014, 10, 4487-4504.	10.0	70
54	Carrier-free photosensitizer nanocrystal for photodynamic therapy. Materials Letters, 2014, 122, 323-326.	2.6	12

#	Article	IF	CITATIONS
55	Simultaneous enhanced diagnosis and photodynamic therapy of photosensitizer-doped perylene nanoparticles via doping, fluorescence resonance energy transfer, and antenna effect. Chemical Communications, 2013, 49, 8072.	4.1	30
56	Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. Journal of Materials Chemistry B, 2013, 1, 3144.	5.8	26