
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3305146/publications.pdf Version: 2024-02-01

<u>ΕΓΤΥΗΙΑ ΖΕΣΤΑ</u>

#	Article	IF	CITATIONS
1	The auroral signature of earthward flow bursts observed in the magnetotail. Geophysical Research Letters, 2000, 27, 3241-3244.	4.0	143
2	Effect of solar wind pressure pulses on the size and strength of the auroral oval. Journal of Geophysical Research, 2003, 108, .	3.3	135
3	The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Annales Geophysicae, 2014, 32, 231-238.	1.6	87
4	Two-dimensional structure of auroral poleward boundary intensifications. Journal of Geophysical Research, 2002, 107, SIA 6-1.	3.3	78
5	The Effect of the January 10, 1997, pressure pulse on the magnetosphere-ionosphere current system. Geophysical Monograph Series, 2000, , 217-226.	0.1	66
6	Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. Journal of Geophysical Research, 2005, 110, .	3.3	66
7	Auroral poleward boundary intensifications (PBIs): Their two-dimensional structure and associated dynamics in the plasma sheet. Journal of Geophysical Research, 2006, 111, .	3.3	62
8	Magnetospheric reconnection driven by solar wind pressure fronts. Annales Geophysicae, 2004, 22, 1367-1378.	1.6	61
9	Geomagnetically Induced Currents Caused by Interplanetary Shocks With Different Impact Angles and Speeds. Space Weather, 2018, 16, 636-647.	3.7	58
10	Propagation of the preliminary reverse impulse of sudden commencements to low latitudes. Journal of Geophysical Research, 2001, 106, 18857-18864.	3.3	55
11	Auroral poleward boundary intensifications and tail bursty flows: A manifestation of a large-scale ULF oscillation?. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	51
12	Auroral disturbances during the January 10, 1997 magnetic storm. Geophysical Research Letters, 2000, 27, 3237-3240.	4.0	48
13	Comparison of storm time equatorial ionospheric electrodynamics in the African and American sectors. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 156-163.	1.6	46
14	Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics. Journal of Geophysical Research, 2012, 117, .	3.3	46
15	Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results. Journal of Space Weather and Space Climate, 2016, 6, A25.	3.3	45
16	Dayside reconnection enhancement resulting from a solar wind dynamic pressure increase. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	41
17	Satellite Orbital Drag During Magnetic Storms. Space Weather, 2019, 17, 1510-1533.	3.7	35
18	Thermosphere Global Time Response to Geomagnetic Storms Caused by Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2017, 122, 10,762.	2.4	33

#	Article	IF	CITATIONS
19	Impact of Precipitating Electrons and Magnetosphereâ€lonosphere Coupling Processes on Ionospheric Conductance. Space Weather, 2018, 16, 829-837.	3.7	32
20	ULF wave activity during the 2003 Halloween superstorm: multipoint observations from CHAMP, Cluster and Geotail missions. Annales Geophysicae, 2012, 30, 1751-1768.	1.6	29
21	Twoâ€dimensional ionospheric flow pattern associated with auroral streamers. Journal of Geophysical Research, 2012, 117, .	3.3	24
22	Thermospheric Heating and Cooling Times During Geomagnetic Storms, Including Extreme Events. Geophysical Research Letters, 2019, 46, 12739-12746.	4.0	24
23	The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: OpenGGCM TIM results. Journal of Geophysical Research: Space Physics, 2014, 119, 3411-3429.	2.4	23
24	Evaluation of the Hill-Siscoe transpolar potential saturation model during a solar wind dynamic pressure pulse. Geophysical Research Letters, 2004, 31, .	4.0	22
25	Global Pc5 pulsations during strong magnetic storms: excitation mechanisms and equatorward expansion. Annales Geophysicae, 2014, 32, 319-331.	1.6	22
26	High‣atitude Thermosphere Neutral Density Response to Solar Wind Dynamic Pressure Enhancement. Journal of Geophysical Research: Space Physics, 2017, 122, 11,559.	2.4	21
27	Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure. Geophysical Research Letters, 2008, 35, .	4.0	20
28	Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
29	Auroral electrojet indices in the Northern and Southern Hemispheres: A statistical comparison. Journal of Geophysical Research: Space Physics, 2014, 119, 4819-4840.	2.4	18
30	Is diffuse aurora driven from above or below?. Geophysical Research Letters, 2017, 44, 641-647.	4.0	18
31	Major pathways to electron distribution function formation in regions of diffuse aurora. Journal of Geophysical Research: Space Physics, 2017, 122, 4251-4265.	2.4	18
32	Response of the equatorial ionosphere to the geomagnetic <i>DP</i> 2 current system. Geophysical Research Letters, 2016, 43, 7364-7372.	4.0	17
33	Comparison of Fourier and wavelet techniques in the determination of geomagnetic field line resonances. Journal of Geophysical Research, 2007, 112, .	3.3	15
34	lonospheric convection signatures of tail fast flows during substorms and Poleward Boundary Intensifications (PBI). Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	15
35	Estimating Satellite Orbital Drag During Historical Magnetic Superstorms. Space Weather, 2020, 18, e2020SW002472.	3.7	15
36	Interplanetary Shock Impact Angles Control Magnetospheric ULF Wave Activity: Wave Amplitude, Frequency, and Power Spectra. Geophysical Research Letters, 2020, 47, e2020GL090857.	4.0	13

#	Article	IF	CITATIONS
37	Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements. Annales Geophysicae, 2009, 27, 851-859.	1.6	12
38	Association of radiation belt electron enhancements with earthward penetration of Pc5 ULF waves: a case study of intense 2001 magnetic storms. Annales Geophysicae, 2015, 33, 1431-1442.	1.6	12
39	Ultralow Frequency Waves as an Intermediary for Solar Wind Energy Input Into the Radiation Belts. Journal of Geophysical Research: Space Physics, 2018, 123, 10,090.	2.4	12
40	Multi-satellite study of the excitation of Pc3 and Pc4-5 ULF waves and their penetration across the plasmapause during the 2003 Halloween superstorm. Annales Geophysicae, 2015, 33, 1237-1252.	1.6	12
41	Nightside flow enhancement associated with solar wind dynamic pressure driven reconnection. Journal of Geophysical Research, 2008, 113, .	3.3	11
42	Interhemispheric fieldâ€aligned currents: Simulation results. Journal of Geophysical Research: Space Physics, 2014, 119, 5600-5612.	2.4	11
43	Low Energy Precipitating Electrons in the Diffuse Aurorae. Geophysical Research Letters, 2019, 46, 3582-3589.	4.0	11
44	Satellite Orbital Drag. , 2016, , 329-351.		11
45	Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case. Journal of Geophysical Research, 2008, 113, .	3.3	10
46	Effects of Nearly Frontal and Highly Inclined Interplanetary Shocks on High‣atitude Fieldâ€Aligned Currents (FACs). Space Weather, 2019, 17, 1659-1673.	3.7	9
47	The Current State and Future Directions of Modeling Thermosphere Density Enhancements During Extreme Magnetic Storms. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	9
48	Impact Angle Control of Local Intense d <i>B</i> /d <i>t</i> Variations During Shockâ€Induced Substorms. Space Weather, 2021, 19, .	3.7	9
49	Reply to comment by T. Kikuchi and T. Araki on "Propagation of the preliminary reverse impulse of sudden commencements to low latitudes― Journal of Geophysical Research, 2002, 107, SMP 33-1-SMP 33-2.	3.3	8
50	Observations of ULF wave related equatorial electrojet and density fluctuations. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 103, 157-168.	1.6	8
51	Global-scale ionospheric flow and aurora precursors of auroral substorms: Coordinated SuperDARN and IMAGE/WIC observations. Journal of Geophysical Research: Space Physics, 2014, 119, 4860-4871.	2.4	8
52	The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research. Space Weather, 2017, 15, 1433-1441.	3.7	8
53	Source of the Bursty Bulk Flow Diffuse Aurora: Electrostatic Cyclotron Harmonic and Whistler Waves in the Coupling of Bursty Bulk Flows to Auroral Precipitation. Journal of Geophysical Research: Space Physics, 2019, 124, 6669-6690.	2.4	8
54	The Formation of Electron Heat Flux Over the Sunlit Quiet Polar Cap Ionosphere. Geophysical Research Letters, 2019, 46, 10201-10208.	4.0	8

#	Article	IF	CITATIONS
55	A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution. Review of Scientific Instruments, 2018, 89, 113306.	1.3	7
56	A detailed description of the solar wind triggers of two dayside transients: Events of 25 July 1997. Journal of Geophysical Research, 2004, 109, .	3.3	6
57	ULF Waveâ€Associated Density Irregularities and Scintillation at the Equator. Geophysical Research Letters, 2018, 45, 5290-5298.	4.0	5
58	Changes in the Magnetic Field Topology and the Dayside/Nightside Reconnection Rates in Response to a Solar Wind Dynamic Pressure Front: A Case Study. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028768.	2.4	5
59	Effect of interhemispheric currents on equivalent ionospheric currents in two hemispheres: Simulation results. Journal of Geophysical Research: Space Physics, 2016, 121, 1339-1348.	2.4	4
60	Automated Technique for the Detection of Step‣ike Solar Wind Dynamic Pressure Changes: Application to the Response of the Transpolar Potential to Solar Wind Dynamic Pressure Fronts. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029198.	2.4	3
61	Association of Auroral Streamers and Bursty Bulk Flows During Different States of the Magnetotail: A Case Study. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029329.	2.4	3
62	A possible case of sporadic aurora observed at Rio de Janeiro. Earth, Planets and Space, 2020, 72, .	2.5	3
63	Nonlinear Least Squares Fitting Technique for the Determination of Field Line Resonance Frequency in Ground Magnetometer Data: Application to Remote Sensing of Plasmaspheric Mass Density. Journal of Geophysical Research: Space Physics, 2021, 126, e2020IA028440.	2.4	Ο