Robert G Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3304982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular detection of influenza A viruses and H5 subtype among migratory Amur falcons (<i>Falco) Tj ETQq1</i>	10.784314 1.3	4 rgBT /Over
2	Distinct but connected avian influenza virus activities in wetlands and live poultry markets in Bangladesh, 2018–2019. Transboundary and Emerging Diseases, 2022, 69, .	1.3	2
3	Swine H1N1 Influenza Virus Variants with Enhanced Polymerase Activity and HA Stability Promote Airborne Transmission in Ferrets. Journal of Virology, 2022, 96, e0010022.	1.5	8
4	Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species. PLoS Pathogens, 2022, 18, e1009973.	2.1	9
5	Kennedy F Shortridge PhD (April 6, 1941 to November 8, 2020): Obituary. Influenza and Other Respiratory Viruses, 2021, 15, 323-325.	1.5	2
6	Updating the influenza virus library at Hokkaido University -It's potential for the use of pandemic vaccine strain candidates and diagnosis. Virology, 2021, 557, 55-61.	1.1	1
7	Highly pathogenic avian influenza virus H5N2 (clade 2.3.4.4) challenge of mallards age appropriate to the 2015 midwestern poultry outbreak. Influenza and Other Respiratory Viruses, 2021, 15, 767-777.	1.5	3
8	Effect of processed aloe vera gel on immunogenicity in inactivated quadrivalent influenza vaccine and upper respiratory tract infection in healthy adults: A randomized double-blind placebo-controlled trial. Phytomedicine, 2021, 91, 153668.	2.3	2
9	Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nature Microbiology, 2021, 6, 1455-1465.	5.9	7
10	Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Frontiers in Immunology, 2021, 12, 786205.	2.2	6
11	Detection of a Novel Reassortant H9N9 Avian Influenza Virus in Free-Range Ducks in Bangladesh. Viruses, 2021, 13, 2357.	1.5	2
12	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	1.5	6
13	Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models. Journal of Virology, 2020, 94, .	1.5	6
14	Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8593-8601.	3.3	43
15	The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biology, 2020, 18, 14.	1.7	40
16	Subtype Diversity of Influenza A Virus in North American Waterfowl: a Multidecade Study. Journal of Virology, 2020, 94, .	1.5	23
17	HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. ELife, 2020, 9, .	2.8	19
18	Evidence of the Presence of Low Pathogenic Avian Influenza A Viruses in Wild Waterfowl in 2018 in South Africa. Pathogens, 2019, 8, 163.	1.2	8

#	Article	IF	CITATIONS
19	Continuing evolution of highly pathogenic H5N1 viruses in Bangladeshi live poultry markets. Emerging Microbes and Infections, 2019, 8, 650-661.	3.0	23
20	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	1.8	10
21	Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Veterinary Microbiology, 2019, 228, 101-111.	0.8	29
22	Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals. Emerging Microbes and Infections, 2018, 7, 1-13.	3.0	13
23	Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 2018, 31, 174-183.	0.6	232
24	Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza and Other Respiratory Viruses, 2018, 12, 220-231.	1.5	17
25	NEUTRALIZING ANTIBODIES TO TYPE A INFLUENZA VIRUSES IN SHOREBIRDS AT DELAWARE BAY, NEW JERSEY, USA. Journal of Wildlife Diseases, 2018, 54, 708-715.	0.3	3
26	Influenza. Nature Reviews Disease Primers, 2018, 4, 3.	18.1	880
27	H9N2 influenza viruses from Bangladesh: Transmission in chicken and New World quail. Influenza and Other Respiratory Viruses, 2018, 12, 814-817.	1.5	14
28	Genetic characterization and pathogenic potential of H10 avian influenza viruses isolated from live poultry markets in Bangladesh. Scientific Reports, 2018, 8, 10693.	1.6	10
29	IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. Journal of General Virology, 2018, 99, 464-474.	1.3	37
30	Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerging Microbes and Infections, 2017, 6, 1-8.	3.0	68
31	Manipulation of neuraminidase packaging signals and hemagglutinin residues improves the growth of A/Anhui/1/2013 (H7N9) influenza vaccine virus yield in eggs. Vaccine, 2017, 35, 1424-1430.	1.7	14
32	Evaluation of multivalent H2 influenza pandemic vaccines in mice. Vaccine, 2017, 35, 1455-1463.	1.7	6
33	Molecular basis of mammalian transmissibility of avian H1N1 influenza viruses and their pandemic potential. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11217-11222.	3.3	24
34	Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh. Emerging Microbes and Infections, 2017, 6, 1-13.	3.0	34
35	Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerging Microbes and Infections, 2017, 6, 1-11.	3.0	56
36	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	1.5	14

#	Article	IF	CITATIONS
37	Influenza A virus: sampling of the unique shorebird habitat at Delaware Bay, USA. Royal Society Open Science, 2017, 4, 171420.	1.1	17
38	Genesis of Influenza A(H5N8) Viruses. Emerging Infectious Diseases, 2017, 23, 1368-1371.	2.0	42
39	Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks. Journal of General Virology, 2017, 98, 1232-1244.	1.3	10
40	Molecular and phylogenetic analyses of influenza B viruses isolated from pediatric inpatients in South Korea during the 2011–2012 winter season. Journal of General Virology, 2017, 98, 2950-2954.	1.3	1
41	Highly Pathogenic Reassortant Avian Influenza A(H5N1) Virus Clade 2.3.2.1a in Poultry, Bhutan. Emerging Infectious Diseases, 2016, 22, 2137-2141.	2.0	17
42	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	2.1	48
43	Antibodies to Influenza A Viruses in Gulls at Delaware Bay, USA. Avian Diseases, 2016, 60, 341-345.	0.4	9
44	Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice. Scientific Reports, 2016, 6, 26742.	1.6	48
45	The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals. Emerging Microbes and Infections, 2016, 5, 1-12.	3.0	28
46	Human–Animal Interface: The Case for Influenza Interspecies Transmission. Advances in Experimental Medicine and Biology, 2016, 972, 17-33.	0.8	26
47	Influenza surveillance on â€~foie gras' duck farms in Bulgaria, 2008–2012. Influenza and Other Respiratory Viruses, 2016, 10, 98-108.	1.5	14
48	Wholeâ€genome analysis of influenza A(H1N1)pdm09 viruses isolated in Uganda from 2009 to 2011. Influenza and Other Respiratory Viruses, 2016, 10, 486-492.	1.5	11
49	The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9033-9038.	3.3	62
50	Reply to Ramey et al.: Let time be the arbiter. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6553-E6554.	3.3	1
51	Surveillance of Influenza Among Children Presenting With Febrile Respiratory Symptoms at a Pediatric Clinic in the Guangdong Province of Southern China. Open Forum Infectious Diseases, 2016, 3, .	0.4	0
52	The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014. Avian Diseases, 2016, 60, 108-117.	0.4	35
53	Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1636-1641.	3.3	105
54	The Interaction between Respiratory Pathogens and Mucus. Cell Host and Microbe, 2016, 19, 159-168.	5.1	221

#	Article	IF	CITATIONS
55	Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3621-3626.	3.3	174
56	Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009–2013 and selection of a candidate vaccine strain with broad cross-reactivity. Veterinary Microbiology, 2016, 182, 1-7.	0.8	37
57	Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses. Journal of Virology, 2016, 90, 103-116.	1.5	41
58	Competitive Fitness of Influenza B Viruses Possessing E119A and H274Y Neuraminidase Inhibitor Resistance–Associated Substitutions in Ferrets. PLoS ONE, 2016, 11, e0159847.	1.1	9
59	Changes to the dynamic nature of hemagglutinin and the emergence of the 2009 pandemic H1N1 influenza virus. Scientific Reports, 2015, 5, 12828.	1.6	10
60	The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains. PLoS ONE, 2015, 10, e0133795.	1.1	7
61	Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 548-553.	3.3	287
62	Egg-adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity. Vaccine, 2015, 33, 3186-3192.	1.7	16
63	Sialic Acid-Binding Protein <i>Sp</i> 2CBMTD Protects Mice against Lethal Challenge with Emerging Influenza A (H7N9) Virus. Antimicrobial Agents and Chemotherapy, 2015, 59, 1495-1504.	1.4	9
64	An Anti-H5N1 Influenza Virus FcDART Antibody Is a Highly Efficacious Therapeutic Agent and Prophylactic against H5N1 Influenza Virus Infection. Journal of Virology, 2015, 89, 4549-4561.	1.5	11
65	Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry?. Emerging Microbes and Infections, 2015, 4, 1-9.	3.0	25
66	Competitive Fitness of Influenza B Viruses with Neuraminidase Inhibitor-Resistant Substitutions in a Coinfection Model of the Human Airway Epithelium. Journal of Virology, 2015, 89, 4575-4587.	1.5	23
67	Possible basis for the emergence of H1N1 viruses with pandemic potential from avian hosts. Emerging Microbes and Infections, 2015, 4, 1-10.	3.0	14
68	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	5.8	90
69	A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genomics, 2015, 16, 574.	1.2	92
70	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	1.5	43
71	Duck TRIM27-L enhances MAVS signaling and is absent in chickens and turkeys. Molecular Immunology, 2015, 67, 607-615.	1.0	12
72	Comparative analysis of virulence of a novel, avian-origin H3N2 canine influenza virus in various host species. Virus Research, 2015, 195, 135-140.	1.1	30

#	Article	IF	CITATIONS
73	Avian Influenza A(H5N1) and A(H9N2) Seroprevalence and Risk Factors for Infection Among Egyptians: A Prospective, Controlled Seroepidemiological Study. Journal of Infectious Diseases, 2015, 211, 1399-1407.	1.9	69
74	Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil. PLoS ONE, 2015, 10, e0145627.	1.1	9
75	Novel Coronavirus and Astrovirus in Delaware Bay Shorebirds. PLoS ONE, 2014, 9, e93395.	1.1	24
76	Avian Influenza Virus (H11N9) in Migratory Shorebirds Wintering in the Amazon Region, Brazil. PLoS ONE, 2014, 9, e110141.	1.1	41
77	Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh. Emerging Microbes and Infections, 2014, 3, 1-14.	3.0	42
78	Genesis of avian influenza H9N2 in Bangladesh. Emerging Microbes and Infections, 2014, 3, 1-17.	3.0	46
79	Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerging Microbes and Infections, 2014, 3, 1-13.	3.0	106
80	Effect of the PB2 and M Genes on the Replication of H6 Influenza Virus in Chickens. Influenza Research and Treatment, 2014, 2014, 1-6.	1.5	4
81	A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets. Vaccine, 2014, 32, 4571-4577.	1.7	30
82	Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nature Communications, 2014, 5, 5029.	5.8	51
83	Continuing challenges in influenza. Annals of the New York Academy of Sciences, 2014, 1323, 115-139.	1.8	300
84	Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses. Scientific Reports, 2014, 4, 7455.	1.6	13
85	The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45, 776-783.	9.4	327
86	Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh. Emerging Infectious Diseases, 2013, 19, .	2.0	70
87	Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathogens, 2013, 9, e1003570.	2.1	83
88	Increased Acid Stability of the Hemagglutinin Protein Enhances H5N1 Influenza Virus Growth in the Upper Respiratory Tract but Is Insufficient for Transmission in Ferrets. Journal of Virology, 2013, 87, 9911-9922.	1.5	81
89	Emergence of Influenza Viruses and Crossing the Species Barrier. Microbiology Spectrum, 2013, 1, .	1.2	6
90	A novel reassortant canine H3N1 influenza virus between pandemic H1N1 and canine H3N2 influenza viruses in Korea. Journal of General Virology, 2012, 93, 551-554.	1.3	94

#	Article	IF	CITATIONS
91	Establishment and Lineage Replacement of H6 Influenza Viruses in Domestic Ducks in Southern China. Journal of Virology, 2012, 86, 6075-6083.	1.5	77
92	Mammalian-Transmissible H5N1 Influenza: the Dilemma of Dual-Use Research. MBio, 2012, 3, .	1.8	21
93	Hemagglutinin–neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14264-14269.	3.3	197
94	Changing Patterns of H6 Influenza Viruses in Hong Kong Poultry Markets. Influenza Research and Treatment, 2011, 2011, 1-9.	1.5	8
95	Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza. PLoS ONE, 2011, 6, e19311.	1.1	84
96	The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks. Journal of Virology, 2010, 84, 1527-1535.	1.5	124
97	Adaptation of Pandemic H1N1 Influenza Viruses in Mice. Journal of Virology, 2010, 84, 8607-8616.	1.5	189
98	Amino Acid Residues in the Fusion Peptide Pocket Regulate the pH of Activation of the H5N1 Influenza Virus Hemagglutinin Protein. Journal of Virology, 2009, 83, 3568-3580.	1.5	94
99	William Graeme Laver PhD, FRS (1929-2008). Influenza and Other Respiratory Viruses, 2008, 2, i-ii.	1.5	0
100	Amantadine-Oseltamivir Combination therapy for H5N1 Influenza Virus Infection in Mice. Antiviral Therapy, 2007, 12, 363-370.	0.6	121
101	H5N1 Influenza — Continuing Evolution and Spread. New England Journal of Medicine, 2006, 355, 2174-2177.	13.9	352
102	H5N1 Outbreaks and Enzootic Influenza. Emerging Infectious Diseases, 2006, 12, 3-8.	2.0	344
103	The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived H5N3 influenza vaccine in ducks and chickens. Virology, 2006, 351, 303-311.	1.1	96
104	H5N1 outbreaks and enzootic influenza. Biodiversity, 2006, 7, 51-55.	0.5	17
105	Controlling avian flu at the source. Nature, 2005, 435, 415-416.	13.7	47
106	Restoration of virulence of escape mutants of H5 and H9 influenza viruses by their readaptation to mice. Journal of General Virology, 2005, 86, 2831-2838.	1.3	22
107	Emergence and Control of Viral Respiratory Diseases. Emerging Infectious Diseases, 2005, 11, e4-e4.	2.0	1
108	Neuraminidase Inhibitor Susceptibility Network Position Statement: Antiviral Resistance in Influenza A/H5N1 Viruses. Antiviral Therapy, 2005, 10, 873-877.	0.6	55

#	Article	IF	CITATIONS
109	Generation of High-Yielding Influenza A Viruses in African Green Monkey Kidney (Vero) Cells by Reverse Genetics. Journal of Virology, 2004, 78, 1851-1857.	1.5	66
110	Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. Journal of General Virology, 2004, 85, 2327-2337.	1.3	88
111	Wet markets—a continuing source of severe acute respiratory syndrome and influenza?. Lancet, The, 2004, 363, 234-236.	6.3	357
112	Role of Quail in the Interspecies Transmission of H9 Influenza A Viruses: Molecular Changes on HA That Correspond to Adaptation from Ducks to Chickens. Journal of Virology, 2003, 77, 3148-3156.	1.5	199
113	Characterization of H5N1 Influenza Viruses That Continue To Circulate in Geese in Southeastern China. Journal of Virology, 2002, 76, 118-126.	1.5	177
114	The importance of animal influenza for human disease. Vaccine, 2002, 20, S16-S20.	1.7	100
115	Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, 20, 3165-3170.	1.7	374
116	Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology, 2002, 83, 2497-2505.	1.3	174
117	Characterization of H5N2 influenza viruses from Italian poultry. Journal of General Virology, 2001, 82, 623-630.	1.3	53
118	Characterization of the Influenza A Virus Gene Pool in Avian Species in Southern China: Was H6N1 a Derivative or a Precursor of H5N1?. Journal of Virology, 2000, 74, 6309-6315.	1.5	204
119	Heterologous protection against lethal A/HongKong/156/97 (H5N1) influenza virus infection in C57BL/6 mice. Journal of General Virology, 2000, 81, 2689-2696.	1.3	95
120	Potential Advantages of DNA Immunization for Influenza Epidemic and Pandemic Planning. Clinical Infectious Diseases, 1999, 28, 225-229.	2.9	23
121	Characterization of Influenza A/HongKong/156/97 (H5N1) Virus in a Mouse Model and Protective Effect of Zanamivir on H5N1 Infection in Mice. Journal of Infectious Diseases, 1998, 178, 1592-1596.	1.9	147
122	Recombinant anti-sialidase single-chain variable fragment antibody. Characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. FEBS Journal, 1994, 221, 151-157.	0.2	115
123	Recombinant antineuraminidase single chain antibody: Expression, characterization, and crystallization in complex with antigen. Proteins: Structure, Function and Bioinformatics, 1993, 16, 57-63.	1.5	58
124	Pathogenic Studies and Antigenic and Sequence Comparisons of A/Equine/Alaska/1/91 (H3NS) Influenza Virus. Journal of Veterinary Diagnostic Investigation, 1993, 5, 8-11.	0.5	2
125	New influenza virus in horses. Nature, 1991, 351, 527-527.	13.7	30
126	Failure to Detect Hemagglutination-Inhibiting Antibodies with Intact Avian Influenza Virions. Infection and Immunity, 1982, 38, 530-535.	1.0	65

#	Article	IF	CITATIONS
127	Immunogenicity of influenza A/USSR (H1N1) subunit vaccine in unprimed young adults. Journal of Medical Virology, 1981, 7, 135-142.	2.5	17
128	Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature, 1981, 290, 713-717.	13.7	466
129	Influenza in children and young adults with cancer.20 cases. Cancer, 1977, 39, 350-353.	2.0	93
130	Immunologic Rebound After Cessation of Long-term Chemotherapy in Acute Leukemia. Blood, 1972, 40, 42-51.	0.6	99
131	Transmission and Pathogenicity of H5N1 Influenza Viruses. Novartis Foundation Symposium, 0, , 128-140.	1.2	2
132	Emergence of Influenza Viruses and Crossing the Species Barrier. , 0, , 115-135.		2