List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/33049/publications.pdf Version: 2024-02-01

Διβέρτο Μάργι

#	Article	IF	CITATIONS
1	The Emergence of Aqueous Ammoniumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
2	The Emergence of Aqueous Ammoniumâ€ i on Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	65
3	Investigation of a Fluorine-Free Phosphonium-Based Ionic Liquid Electrolyte and Its Compatibility with Lithium Metal. ACS Applied Materials & Interfaces, 2022, 14, 20888-20895.	8.0	4
4	Concentrated Electrolytes Enabling Stable Aqueous Ammoniumâ€lon Batteries. Advanced Materials, 2022, 34, .	21.0	40
5	Zincâ€lon Hybrid Supercapacitors Employing Acetateâ€Based Waterâ€inâ€Salt Electrolytes. Small, 2022, 18, .	10.0	22
6	Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. Journal of Power Sources, 2021, 485, 229329.	7.8	37
7	Nonfluorinated Ionic Liquid Electrolytes for Lithium Metal Batteries: Ionic Conduction, Electrochemistry, and Interphase Formation. Advanced Energy Materials, 2021, 11, 2003521.	19.5	37
8	Tragacanth Gum as Green Binder for Sustainable Waterâ€Processable Electrochemical Capacitor. ChemSusChem, 2021, 14, 356-362.	6.8	18
9	Embedding Heterostructured αâ€MnS/MnO Nanoparticles in Sâ€Doped Carbonaceous Porous Framework as Highâ€Performance Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 918-927.	3.4	21
10	Reversible Copper Sulfide Conversion in Nonflammable Trimethyl Phosphate Electrolytes for Safe Sodiumâ€lon Batteries. Small Structures, 2021, 2, 2100035.	12.0	30
11	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	19.5	39
12	Liquidâ€Assisted Mechanochemical Synthesis of Lilâ€Doped Sulfide Glass Electrolyte. Energy Technology, 2021, 9, 2100385.	3.8	2
13	A Thin and Uniform Fluoride-Based Artificial Interphase for the Zinc Metal Anode Enabling Reversible Zn/MnO ₂ Batteries. ACS Energy Letters, 2021, 6, 3063-3071.	17.4	134
14	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery (Adv. Energy Mater. 35/2021). Advanced Energy Materials, 2021, 11, 2170136.	19.5	0
15	Redoxâ€Mediated Redâ€Phosphorous Semiâ€Liquid Anode Enabling Metalâ€Free Rechargeable Naâ€Seawater Batteries with High Energy Density. Advanced Energy Materials, 2021, 11, 2102061.	19.5	13
16	On the nanoscopic structural heterogeneity of liquid <i>n</i> -alkyl carboxylic acids. Physical Chemistry Chemical Physics, 2021, 23, 20282-20287.	2.8	6
17	Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 3697-3708.	8.0	37
18	Caseinâ€Derived Activated Carbon: Turning Expired Milk into Active Material for Electrochemical Capacitors. Energy Technology, 2020, 8, 1901225.	3.8	2

#	Article	IF	CITATIONS
19	Natural Polymers as Green Binders for High‣oading Supercapacitor Electrodes. ChemSusChem, 2020, 13, 763-770.	6.8	37
20	Current status and future perspectives of lithium metal batteries. Journal of Power Sources, 2020, 480, 228803.	7.8	109
21	Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis. Electrochimica Acta, 2020, 357, 136838.	5.2	54
22	Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteries employing conversion/alloying-type negative electrodes. Journal of Power Sources, 2020, 473, 228583.	7.8	23
23	Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. Nano Energy, 2020, 77, 105176.	16.0	46
24	Metal–Organic Framework Derived Fe ₇ S ₈ Nanoparticles Embedded in Heteroatomâ€Đoped Carbon with Lithium and Sodium Storage Capability. Small Methods, 2020, 4, 2000637.	8.6	46
25	Determining Realistic Electrochemical Stability Windows of Electrolytes for Electrical Double‣ayer Capacitors. Batteries and Supercaps, 2020, 3, 698-707.	4.7	33
26	Artificial Solid Electrolyte Interphases for Lithium Metal Electrodes by Wet Processing: The Role of Metal Salt Concentration and Solvent Choice. ACS Applied Materials & Interfaces, 2020, 12, 32851-32862.	8.0	38
27	High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Materials, 2020, 27, 61-68.	18.0	64
28	Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries. Energy Storage Materials, 2020, 30, 196-205.	18.0	46
29	Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. Journal of Power Sources, 2019, 437, 226923.	7.8	57
30	Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Liâ€rich Phases (Li 1+ x) Tj ETQo	q0.0,0 rgB 6.8	BT /Overlock
31	Superior Lithium Storage Capacity of αâ€MnS Nanoparticles Embedded in Sâ€Doped Carbonaceous Mesoporous Frameworks. Advanced Energy Materials, 2019, 9, 1902077.	19.5	108
32	High-Power Na-Ion and K-Ion Hybrid Capacitors Exploiting Cointercalation in Graphite Negative Electrodes. ACS Energy Letters, 2019, 4, 2675-2682.	17.4	88
33	Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chemical Communications, 2019, 55, 2265-2268.	4.1	111
34	Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 13096-13102.	10.3	22
35	Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Liâ€rich Phases (Li _{1+<i>x</i>} Al) on Capacity Fading. ChemSusChem, 2019, 12, 2609-2619.	6.8	39
36	A comprehensive insight into the volumetric response of graphite electrodes upon sodium co-intercalation in ether-based electrolytes. Electrochimica Acta, 2019, 304, 474-486.	5.2	25

#	Article	IF	CITATIONS
37	Lithium Batteries: Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries (Adv. Energy Mater. 10/2019). Advanced Energy Materials, 2019, 9, 1970029.	19.5	2
38	Singleâ€Ion Conducting Electrolyte Based on Electrospun Nanofibers for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2019, 9, 1803422.	19.5	109
39	Amorphous Lithium Sulfide as Lithiumâ€Sulfur Battery Cathode with Low Activation Barrier. Energy Technology, 2019, 7, 1801013.	3.8	17
40	Electrolytes based on Nâ€Butylâ€Nâ€Methylâ€Pyrrolidinium 4,5â€Dicyanoâ€2â€(Trifluoromethyl) Imidazole for Voltage Electrochemical Double Layer Capacitors. ChemElectroChem, 2019, 6, 552-557.	High 3.4	9
41	Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries. Electrochimica Acta, 2019, 296, 806-813.	5.2	27
42	Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imideâ€Based Electrolytes. ChemSusChem, 2019, 12, 208-212.	6.8	19
43	High energy and high voltage integrated photo-electrochemical double layer capacitor. Sustainable Energy and Fuels, 2018, 2, 968-977.	4.9	23
44	Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?. Journal of Power Sources, 2018, 383, 157-163.	7.8	23
45	3D Porous Cu–Zn Alloys as Alternative Anode Materials for Liâ€ l on Batteries with Superior Low <i>T</i> Performance. Advanced Energy Materials, 2018, 8, 1701706.	19.5	85
46	Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. Journal of Power Sources, 2018, 375, 43-52.	7.8	154
47	Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy and Environmental Science, 2018, 11, 3096-3127.	30.8	379
48	Portable High Voltage Integrated Harvesting-Storage Device Employing Dye-Sensitized Solar Module and All-Solid-State Electrochemical Double Layer Capacitor. Frontiers in Chemistry, 2018, 6, 443.	3.6	20
49	Fluorineâ€Free Waterâ€inâ€Salt Electrolyte for Green and Low ost Aqueous Sodiumâ€ion Batteries. ChemSusChem, 2018, 11, 3704-3707.	6.8	90
50	Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries. Journal of Power Sources, 2018, 397, 79-86.	7.8	37
51	Cobalt Disulfide Nanoparticles Embedded in Porous Carbonaceous Micro-Polyhedrons Interlinked by Carbon Nanotubes for Superior Lithium and Sodium Storage. ACS Nano, 2018, 12, 7220-7231.	14.6	234
52	High Capacity All olid‧tate Lithium Batteries Enabled by Pyrite‧ulfur Composites. Advanced Energy Materials, 2018, 8, 1801462.	19.5	89
53	Hybrid electrolytes for lithium metal batteries. Journal of Power Sources, 2018, 392, 206-225.	7.8	179
54	Radical Decomposition of Ether-Based Electrolytes for Li-S Batteries . Journal of the Electrochemical Society, 2017, 164, A1812-A1819.	2.9	23

#	Article	IF	CITATIONS
55	Modeling nucleation and growth of zinc oxide during discharge of primary zinc-air batteries. Journal of Power Sources, 2017, 360, 136-149.	7.8	80
56	Critical Insight into the Relentless Progression Toward Graphene and Grapheneâ€Containing Materials for Lithiumâ€Ion Battery Anodes. Advanced Materials, 2017, 29, 1603421.	21.0	132
57	Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 26797-26804.	8.0	29
58	ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries. Nano Energy, 2017, 42, 341-352.	16.0	103
59	Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. Journal of Materials Chemistry A, 2016, 4, 17251-17259.	10.3	293
60	Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies. Electrochimica Acta, 2016, 214, 129-138.	5.2	43
61	Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes. Journal of Power Sources, 2016, 326, 672-679.	7.8	24
62	Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder. Journal of Power Sources, 2015, 300, 216-222.	7.8	26
63	The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14, 271-279.	27.5	2,237
64	Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: A comparative study between activated carbon and multi-walled carbon nanotubes. Journal of Power Sources, 2015, 273, 1016-1022.	7.8	36
65	Lithiumâ€lon Batteries: ZnFe ₂ O ₄ â€C/LiFePO ₄ â€ENT: A Novel Highâ€Powe Lithiumâ€lon Battery with Excellent Cycling Performance (Adv. Energy Mater. 10/2014). Advanced Energy Materials, 2014, 4, .	er 19.5	5
66	ZnFe ₂ O ₄ â€C/LiFePO ₄ â€CNT: A Novel Highâ€Power Lithiumâ€ion Battery with Excellent Cycling Performance. Advanced Energy Materials, 2014, 4, 1-9.	19.5	287
67	Natural Cellulose: A Green Alternative Binder for High Voltage Electrochemical Double Layer Capacitors Containing Ionic Liquid-Based Electrolytes. Journal of the Electrochemical Society, 2014, 161, A368-A375.	2.9	63
68	The effects of pristine and carboxylated multi-walled carbon nanotubes as conductive additives on the performance of LiNi0.33Co0.33Mn0.33O2 and LiFePO4 positive electrodes. Electrochimica Acta, 2012, 78, 17-26.	5.2	36
69	Study of multi-walled carbon nanotubes for lithium-ion battery electrodes. Journal of Power Sources, 2011, 196, 3303-3309.	7.8	86
70	Supported PtRu on mesoporous carbons for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 615-620.	7.8	34
71	Study of Carbon Nanotubes for Lithium-Ion Batteries Application. Advances in Science and Technology, 0, , .	0.2	0