Monica Maria Bastos Paoliello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3304715/publications.pdf

Version: 2024-02-01

32 1,250 17
papers citations h-index

34
g-index

1922
citing authors

377865

35 all docs

35 docs citations 35 times ranked

#	Article	IF	CITATIONS
1	Meteorological parameters and cases of COVID-19 in Brazilian cities: an observational study. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 14-28.	2.3	3
2	Leveraging artificial intelligence to advance the understanding of chemical neurotoxicity. NeuroToxicology, 2022, 89, 9-11.	3.0	4
3	The impact of COVID-19 vaccination on case fatality rates in a city in Southern Brazil. American Journal of Infection Control, 2022, 50, 491-496.	2.3	10
4	Mercury and cancer: Where are we now after two decades of research?. Food and Chemical Toxicology, 2022, 164, 113001.	3.6	17
5	An updated systematic review on the association between Cd exposure, blood pressure and hypertension. Ecotoxicology and Environmental Safety, 2021, 208, 111636.	6.0	32
6	Risk factors associated with COVID-19-induced death in patients hospitalized in intensive care units (ICUs) in a city in Southern Brazil. Toxicology Reports, 2021, 8, 1565-1568.	3.3	2
7	Review of the mechanism underlying mefloquine-induced neurotoxicity. Critical Reviews in Toxicology, 2021, 51, 209-216.	3.9	10
8	Social injustice in environmental health: A call for fortitude. Environmental Research, 2021, 194, 110675.	7.5	7
9	Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. International Journal of Molecular Sciences, 2021, 22, 4646.	4.1	68
10	Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Archives of Toxicology, 2021, 95, 2263-2278.	4.2	23
11	Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Current Hypertension Reviews, 2021, 17, 14-26.	0.9	13
12	Hair Lead, Aluminum, and Other Toxic Metals in Normal-Weight and Obese Patients with Coronary Heart Disease. International Journal of Environmental Research and Public Health, 2021, 18, 8195.	2.6	6
13	Environmental and health hazards of military metal pollution. Environmental Research, 2021, 201, 111568.	7.5	23
14	BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules, 2021, 11, 1762.	4.0	8
15	SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19. Food and Chemical Toxicology, 2020, 146, 111769.	3.6	117
16	Relationship Between Elevated Hair Mercury Levels, Essential Element Status, and Metabolic Profile in Overweight and Obese Adults. Biological Trace Element Research, 2020, 199, 2874-2881.	3.5	4
17	Region-specific air pollutants and meteorological parameters influence COVID-19: A study from mainland China. Ecotoxicology and Environmental Safety, 2020, 204, 111035.	6.0	46
18	Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environmental Research, 2020, 187, 109618.	7.5	28

2

#	Article	IF	Citations
19	When the boundaries between science and politics are blurred. Toxicology Reports, 2020, 7, 1607.	3.3	1
20	Blood reference values for metals in a general adult population in southern Brazil. Environmental Research, 2019, 177, 108646.	7.5	6
21	Toxicological profile of Amanita virosa – A narrative review. Toxicology Reports, 2019, 6, 143-150.	3.3	17
22	Association of lead, cadmium and mercury with paraoxonase 1 activity and malondialdehyde in a general population in Southern Brazil. Environmental Research, 2017, 156, 674-682.	7.5	16
23	Blood manganese levels and associated factors in a population-based study in Southern Brazil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1064-1077.	2.3	16
24	Association between blood lead and blood pressure: a population-based study in Brazilian adults. Environmental Health, 2017, 16, 27.	4.0	36
25	Paraoxonase 1 (PON1) Q192R genotypes and their interaction with smoking strongly increase atherogenicity and the Framingham risk score. Archives of Endocrinology and Metabolism, 2016, 60, 426-435.	0.6	7
26	Lead Exposure and Oxidative Stress: A Systematic Review. Reviews of Environmental Contamination and Toxicology, 2016, 236, 193-238.	1.3	75
27	Manganese homeostasis in the nervous system. Journal of Neurochemistry, 2015, 134, 601-610.	3.9	222
28	Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. International Journal of Environmental Research and Public Health, 2015, 12, 7519-7540.	2.6	263
29	Risk Factors for Lead Exposure in Adult Population in Southern Brazil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 92-108.	2.3	38
30	Effects of Lead Exposure and Genetic Polymorphisms on ALAD and GPx Activities in Brazilian Battery Workers. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 1073-1081.	2.3	17
31	Lead levels in milk and blood from donors to the Breast Milk Bank in Southern Brazil. Environmental Research, 2010, 110, 265-271.	7.5	33
32	Environmental Contamination and Human Exposure to Lead in Brazil. Reviews of Environmental Contamination and Toxicology, 2005, 184, 59-96.	1.3	26