Yoav Sharoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3304509/publications.pdf

Version: 2024-02-01

361045 395343 2,727 36 20 33 citations h-index g-index papers 37 37 37 2344 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of golden tomato extract on skin appearance—outlook into gene expression in cultured dermal fibroblasts and on transâ€epidermal water loss and skin barrier in human subjects. Journal of Cosmetic Dermatology, 2022, 21, 3022-3030.	0.8	2
2	Effect of Lumenato oral supplementation on plasma carotenoid levels and improvement of visual and experiential skin attributes. Journal of Cosmetic Dermatology, 2022, 21, 4042-4052.	0.8	5
3	Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. International Journal of Molecular Sciences, 2022, 23, 136.	1.8	5
4	Recent Progress in Discovering the Role of Carotenoids and Metabolites in Prostatic Physiology and Pathology—A Review—Part II: Carotenoids in the Human Studies. Antioxidants, 2021, 10, 319.	2.2	14
5	Combined Effects of Carotenoids and Polyphenols in Balancing the Response of Skin Cells to UV Irradiation. Molecules, 2021, 26, 1931.	1.7	21
6	Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer—A Review—Part I: Molecular Mechanisms of Carotenoid Action. Antioxidants, 2021, 10, 585.	2.2	16
7	Mechanistic aspects of carotenoid health benefits – where are we now?. Nutrition Research Reviews, 2021, 34, 276-302.	2.1	61
8	Seaweeds fast EDC bioremediation: Supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants. Environmental Pollution, 2021, 278, 116853.	3.7	10
9	Curcumin and Carnosic Acid Cooperate to Inhibit Proliferation and Alter Mitochondrial Function of Metastatic Prostate Cancer Cells. Antioxidants, 2021, 10, 1591.	2.2	12
10	The Protective Effect of Carotenoids, Polyphenols, and Estradiol on Dermal Fibroblasts under Oxidative Stress. Antioxidants, 2021, 10, 2023.	2.2	17
11	Congenital thrombotic thrombocytopenic purpura in a large cohort of patients carrying a novel mutation in ADAMTS13 gene. Thrombosis Research, 2020, 185, 167-170.	0.8	4
12	Inhibition of Osteoclast Differentiation by Carotenoid Derivatives through Inhibition of the NF- $\hat{\mathbb{P}}$ B Pathway. Antioxidants, 2020, 9, 1167.	2.2	6
13	Effect of Tomato Nutrient Complex on Blood Pressure: A Double Blind, Randomized Dose–Response Study. Nutrients, 2019, 11, 950.	1.7	32
14	Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget, 2016, 7, 31847-31861.	0.8	52
15	The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Archives of Biochemistry and Biophysics, 2015, 572, 28-35.	1.4	108
16	Carotenoid derivatives inhibit nuclear factor kappa B activity in bone and cancer cells by targeting key thiol groups. Free Radical Biology and Medicine, 2014, 75, 105-120.	1.3	56
17	The role of lycopene and its derivatives in the regulation of transcription systems: implications for cancer prevention. American Journal of Clinical Nutrition, 2012, 96, 1173S-1178S.	2.2	58
18	Polyphenols, isothiocyanates, and carotenoid derivatives enhance estrogenic activity in bone cells but inhibit it in breast cancer cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E815-E824.	1.8	21

#	Article	lF	CITATIONS
19	Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Molecular Nutrition and Food Research, 2012, 56, 259-269.	1.5	140
20	The Role of Tomato Lycopene in Cancer Prevention., 2011,, 47-66.		2
21	Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radical Biology and Medicine, 2009, 47, 659-667.	1.3	141
22	Tomato Carotenoids and the IGF System in Cancer. , 2008, , 395-410.		1
23	Lycopene and other carotenoids inhibit estrogenic activity of $17\hat{l}^2$ -estradiol and genistein in cancer cells. Breast Cancer Research and Treatment, 2007, 104, 221-230.	1.1	93
24	Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. European Journal of Nutrition, 2006, 45, 275-282.	1.8	88
25	Carotenoids activate the antioxidant response element transcription system. Molecular Cancer Therapeutics, 2005, 4, 177-86.	1.9	216
26	Carotenoids and transcription. Archives of Biochemistry and Biophysics, 2004, 430, 89-96.	1.4	108
27	Effects of acyclo-Retinoic Acid and Lycopene on Activation of the Retinoic Acid Receptor and Proliferation of Mammary Cancer Cells. Archives of Biochemistry and Biophysics, 2001, 391, 295-302.	1.4	84
28	Carnosic Acid Inhibits Proliferation and Augments Differentiation of Human Leukemic Cells Induced by 1,25-Dihydroxyvitamin Dsub3 and Retinoic Acid. Nutrition and Cancer, 2001, 41, 135-144.	0.9	84
29	Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E–cdk2 complexes. Oncogene, 2001, 20, 3428-3436.	2.6	212
30	Lycopene Interferes With Cell Cycle Progression and Insulin-Like Growth Factor I Signaling in Mammary Cancer Cells. Nutrition and Cancer, 2000, 36, 101-111.	0.9	315
31	Lycopene and $1,25$ â \in dihydroxyvitamin d ₃ cooperate in the inhibition of cell cycle progression and induction of differentiation in hlâ \in 60 leukemic cells. Nutrition and Cancer, 1999, 33, 105-112.	0.9	205
32	LYCOPENE, THE MAJOR TOMATO CAROTENOID, DELAYS CELL CYCLE PROGRESSION IN CANCER CELLS. Biochemical Society Transactions, 1996, 24, 515S-515S.	1.6	0
33	Lycopene is a more potent inhibitor of human cancer cell proliferation than either αâ€carotene or βâ€carotene. Nutrition and Cancer, 1995, 24, 257-266.	0.9	496
34	Gonadotropin-Releasing Hormone Specific Binding Sites in Normal and Malignant Renal Tissue. Journal of Urology, 1992, 148, 1568-1570.	0.2	30
35	Estrogen and progesterone receptor levels are lower in specimens taken from previously biopsied breast tumor tissue. Journal of Surgical Oncology, 1987, 35, 197-200.	0.8	4
36	Membranal tyrosine protein kinase activity (but not cAMP-dependent protein kinase activity) is associated with growth of rat mammary tumors. FEBS Letters, 1985, 189, 133-136.	1.3	8

3