
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3304290/publications.pdf Version: 2024-02-01

SHENCOLAN

#	Article	IF	CITATIONS
1	Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495, 80-84.	13.7	2,005
2	A Homochiral Porous Metalâ ´'Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2005, 127, 8940-8941.	6.6	1,814
3	Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie - International Edition, 2009, 48, 9457-9460.	7.2	1,272
4	Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications, 2010, 46, 44-53.	2.2	1,210
5	Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. Journal of the American Chemical Society, 2008, 130, 1012-1016.	6.6	813
6	Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 2017, 139, 2786-2793.	6.6	808
7	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
8	Framework-Catenation Isomerism in Metalâ~'Organic Frameworks and Its Impact on Hydrogen Uptake. Journal of the American Chemical Society, 2007, 129, 1858-1859.	6.6	608
9	An Interweaving MOF with High Hydrogen Uptake. Journal of the American Chemical Society, 2006, 128, 3896-3897.	6.6	567
10	Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society, 2011, 133, 10382-10385.	6.6	563
11	Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chemical Society Reviews, 2014, 43, 5841-5866.	18.7	547
12	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	7.2	505
13	Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nature Communications, 2014, 5, 5537.	5.8	481
14	A Metalâ^'Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. Journal of the American Chemical Society, 2006, 128, 11734-11735.	6.6	477
15	Rationally Designed Micropores within a Metalâ~'Organic Framework for Selective Sorption of Gas Molecules. Inorganic Chemistry, 2007, 46, 1233-1236.	1.9	471
16	Applications of metal-organic frameworks featuring multi-functional sites. Coordination Chemistry Reviews, 2016, 307, 106-129.	9.5	471
17	Metalâ€Organic Frameworks for CO ₂ Chemical Transformations. Small, 2016, 12, 6309-6324.	5.2	458
18	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	3.0	429

#	Article	IF	CITATIONS
19	Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. Journal of the American Chemical Society, 2016, 138, 15790-15796.	6.6	414
20	Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018, 30, e1705479.	11.1	398
21	Cobalt Imidazolate Framework as Precursor for Oxygen Reduction Reaction Electrocatalysts. Chemistry - A European Journal, 2011, 17, 2063-2067.	1.7	390
22	Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 2014, 136, 8654-8660.	6.6	383
23	Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 2019, 6, 1801410.	5.6	368
24	A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation. Angewandte Chemie - International Edition, 2007, 46, 2458-2462.	7.2	358
25	How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome <i>c</i> Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society, 2012, 134, 13188-13191.	6.6	320
26	A Mesoporous Metalâ^'Organic Framework with Permanent Porosity. Journal of the American Chemical Society, 2006, 128, 16474-16475.	6.6	314
27	Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 984-992.	6.6	310
28	Enhancing H ₂ Uptake by "Closeâ€Packing―Alignment of Open Copper Sites in Metal–Organi Frameworks. Angewandte Chemie - International Edition, 2008, 47, 7263-7266.	с _{7.2}	306
29	Highly Selective Carbon Dioxide Uptake by [Cu(bpy- <i>n</i>) ₂ (SiF ₆)] (bpy-1 =) Tj ETQq 3663-3666.	1 1 0.784 6.6	314 rgBT /0 303
30	Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nature Communications, 2018, 9, 1644.	5.8	300
31	Hydrogen Adsorption in a Highly Stable Porous Rare-Earth Metal-Organic Framework: Sorption Properties and Neutron Diffraction Studies. Journal of the American Chemical Society, 2008, 130, 9626-9627.	6.6	294
32	A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. Journal of Materials Chemistry A, 2017, 5, 8385-8393.	5.2	294
33	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie - International Edition, 2018, 57, 4657-4662.	7.2	283
34	A Coordinatively Linked Yb Metal–Organic Framework Demonstrates High Thermal Stability and Uncommon Gasâ€Adsorption Selectivity. Angewandte Chemie - International Edition, 2008, 47, 4130-4133.	7.2	280
35	Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76, 165-174.	5.4	279
36	Efficient Mercury Capture Using Functionalized Porous Organic Polymer. Advanced Materials, 2017, 29, 1700665.	11.1	255

#	Article	IF	CITATIONS
37	Metalâ^'Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials, 2008, 20, 3145-3152.	3.2	248
38	Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO ₂ Nanoparticles. ACS Catalysis, 2015, 5, 327-335.	5.5	244
39	Metal–Organic Framework Based upon the Synergy of a BrÃ,nsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
40	Fabricating Covalent Organic Framework Capsules with Commodious Microenvironment for Enzymes. Journal of the American Chemical Society, 2020, 142, 6675-6681.	6.6	236
41	Packaging and delivering enzymes by amorphous metal-organic frameworks. Nature Communications, 2019, 10, 5165.	5.8	234
42	A Triply Interpenetrated Microporous Metalâ^'Organic Framework for Selective Sorption of Gas Molecules. Inorganic Chemistry, 2007, 46, 8490-8492.	1.9	230
43	Biomimetic Catalysis of a Porous Iron-Based Metal–Metalloporphyrin Framework. Inorganic Chemistry, 2012, 51, 12600-12602.	1.9	230
44	Metal–Organic Frameworks with Exceptionally High Methane Uptake: Where and How is Methane Stored?. Chemistry - A European Journal, 2010, 16, 5205-5214.	1.7	227
45	Simultaneous Trapping of C ₂ H ₂ and C ₂ H ₆ from a Ternary Mixture of C ₂ H ₂ H ₂ H ₆ in a Robust Metalâ€"Organic Framework for the Purification of C ₂ H ₄ 444 </td <td>7.2</td> <td>223</td>	7.2	223
46	Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications. Coordination Chemistry Reviews, 2019, 384, 90-106.	9.5	220
47	Functionalized Porous Aromatic Framework for Efficient Uranium Adsorption from Aqueous Solutions. ACS Applied Materials & amp; Interfaces, 2017, 9, 12511-12517.	4.0	215
48	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
49	Metal–Organic Frameworks for Enzyme Immobilization: Beyond Host Matrix Materials. ACS Central Science, 2020, 6, 1497-1506.	5.3	212
50	Functionalized metal–organic framework as a new platform for efficient and selective removal of cadmium(<scp>ii</scp>) from aqueous solution. Journal of Materials Chemistry A, 2015, 3, 15292-15298.	5.2	210
51	A porous metal–metalloporphyrin framework featuring high-density active sites for chemical fixation of CO ₂ under ambient conditions. Chemical Communications, 2014, 50, 5316-5318.	2.2	203
52	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie - International Edition, 2018, 57, 16754-16759.	7.2	200
53	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie - International Edition, 2020, 59, 3678-3684.	7.2	196
54	Hydrogen Adsorption in an Interpenetrated Dynamic Metalâ^'Organic Framework. Inorganic Chemistry, 2006, 45, 5718-5720.	1.9	193

#	Article	IF	CITATIONS
55	Microporous Lanthanide Metal-Organic Frameworks Containing Coordinatively Linked Interpenetration: Syntheses, Gas Adsorption Studies, Thermal Stability Analysis, and Photoluminescence Investigation. Inorganic Chemistry, 2009, 48, 2072-2077.	1.9	189
56	Functionalized Iron–Nitrogen–Carbon Electrocatalyst Provides a Reversible Electron Transfer Platform for Efficient Uranium Extraction from Seawater. Advanced Materials, 2021, 33, e2106621.	11.1	184
57	A Metal–Organic Framework Based Methane Nanoâ€ŧrap for the Capture of Coalâ€Mine Methane. Angewandte Chemie - International Edition, 2019, 58, 10138-10141.	7.2	181
58	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, 5283-5288.	7.2	172
59	Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. Journal of the American Chemical Society, 2022, 144, 1681-1689.	6.6	172
60	Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.	6.6	168
61	De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828.	6.6	167
62	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 10107-10111.	7.2	166
63	An unusual case of symmetry-preserving isomerism. Chemical Communications, 2010, 46, 1329.	2.2	162
64	Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability. Chemical Communications, 2005, , 2663.	2.2	161
65	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
66	Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. CheM, 2018, 4, 1726-1739.	5.8	157
67	Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Customâ€Đesigned Metalloporphyrin Linker. Angewandte Chemie - International Edition, 2012, 51, 10082-10085.	7.2	154
68	Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry, 2012, 51, 9156-9158.	1.9	152
69	Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chemical Communications, 2015, 51, 2714-2717.	2.2	151
70	Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 15896-15902.	6.6	148
71	Robust Metalâ~'Organic Framework Enforced by Triple-Framework Interpenetration Exhibiting High H ₂ Storage Density. Inorganic Chemistry, 2008, 47, 6825-6828.	1.9	148
72	Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 9039-9044.	1.9	148

#	Article	IF	CITATIONS
73	Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nature Communications, 2021, 12, 1982.	5.8	147
74	Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications, 2016, 52, 5940-5942.	2.2	145
75	Three-Dimensional Porous Metal–Metalloporphyrin Framework Consisting of Nanoscopic Polyhedral Cages. Journal of the American Chemical Society, 2011, 133, 16322-16325.	6.6	142
76	Facile Approach to Graft Ionic Liquid into MOF for Improving the Efficiency of CO ₂ Chemical Fixation. ACS Applied Materials & Interfaces, 2018, 10, 27124-27130.	4.0	142
77	Indium–Organic Frameworks Based on Dual Secondary Building Units Featuring Halogen-Decorated Channels for Highly Effective CO ₂ Fixation. Chemistry of Materials, 2019, 31, 1084-1091.	3.2	142
78	Ultramicroporous Metalâ^'Organic Framework Based on 9,10-Anthracenedicarboxylate for Selective Gas Adsorption. Inorganic Chemistry, 2007, 46, 8499-8501.	1.9	138
79	Biomimetic catalysis of metal–organic frameworks. Dalton Transactions, 2016, 45, 9744-9753.	1.6	138
80	How Do Enzymes Orient When Trapped on Metal–Organic Framework (MOF) Surfaces?. Journal of the American Chemical Society, 2018, 140, 16032-16036.	6.6	138
81	A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup. Chemical Communications, 2013, 49, 1533.	2.2	136
82	Internet of Things and BOM-Based Life Cycle Assessment of Energy-Saving and Emission-Reduction of Products. IEEE Transactions on Industrial Informatics, 2014, 10, 1252-1261.	7.2	136
83	A molecular-level superhydrophobic external surface to improve the stability of metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 18770-18776.	5.2	135
84	Tailored Porous Organic Polymers for Task-Specific Water Purification. Accounts of Chemical Research, 2020, 53, 812-821.	7.6	134
85	Why Does Enzyme Not Leach from Metal–Organic Frameworks (MOFs)? Unveiling the Interactions between an Enzyme Molecule and a MOF. Inorganic Chemistry, 2014, 53, 10006-10008.	1.9	132
86	Fabrication of Highly Sensitive and Stable Hydroxylamine Electrochemical Sensor Based on Gold Nanoparticles and Metal–Metalloporphyrin Framework Modified Electrode. ACS Applied Materials & Interfaces, 2016, 8, 18173-18181.	4.0	132
87	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie - International Edition, 2016, 55, 5472-5476.	7.2	129
88	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, 8670-8675.	7.2	128
89	Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO ₂ . ChemSusChem, 2017, 10, 1160-1165.	3.6	127
90	Imparting amphiphobicity on single-crystalline porous materials. Nature Communications, 2016, 7, 13300.	5.8	126

#	Article	IF	CITATIONS
91	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	5.3	126
92	Solvent-Free Preparation of Nanosized Sulfated Zirconia with BrÃ,nsted Acidic Sites from a Simple Calcination. Journal of Physical Chemistry B, 2005, 109, 2567-2572.	1.2	124
93	Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals. Advanced Materials, 2019, 31, e1805148.	11.1	123
94	Selective Gas Sorption within a Dynamic Metal-Organic Framework. Inorganic Chemistry, 2007, 46, 8705-8709.	1.9	122
95	Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nature Communications, 2019, 10, 1646.	5.8	122
96	A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis. Journal of Materials Chemistry A, 2016, 4, 15240-15246.	5.2	120
97	Metal-Organic Framework Anchored with a Lewis Pair as a New Paradigm for Catalysis. CheM, 2018, 4, 2587-2599.	5.8	120
98	Metalâ^'Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis. Inorganic Chemistry, 2007, 46, 3432-3434.	1.9	119
99	Preparation and Gas Adsorption Studies of Three Mesh-Adjustable Molecular Sieves with a Common Structure. Journal of the American Chemical Society, 2009, 131, 6445-6451.	6.6	117
100	Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H ₂ Evolution. ACS Catalysis, 2021, 11, 2098-2107.	5.5	116
101	Interpenetrating Metal–Metalloporphyrin Framework for Selective CO ₂ Uptake and Chemical Transformation of CO ₂ . Inorganic Chemistry, 2016, 55, 7291-7294.	1.9	115
102	Tuning Pore Heterogeneity in Covalent Organic Frameworks for Enhanced Enzyme Accessibility and Resistance against Denaturants. Advanced Materials, 2019, 31, e1900008.	11.1	114
103	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	5.0	110
104	Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. EScience, 2022, 2, 227-234.	25.0	108
105	Removal of Pertechnetateâ€Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks. Chemistry - A European Journal, 2016, 22, 17581-17584.	1.7	107
106	Quantitative Study of Interactions between Oxygen Lone Pair and Aromatic Rings:  Substituent Effect and the Importance of Closeness of Contact. Journal of Organic Chemistry, 2008, 73, 689-693.	1.7	106
107	Postâ€Synthetic Modification of Porphyrinâ€Encapsulating Metal–Organic Materials by Cooperative Addition of Inorganic Salts to Enhance CO ₂ <i>/</i> CH ₄ Selectivity. Angewandte Chemie - International Edition, 2012, 51, 9330-9334.	7.2	106
108	Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano, 2019, 13, 8087-8098.	7.3	106

#	Article	IF	CITATIONS
109	Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis. Chemical Communications, 2014, 50, 8507.	2.2	105
110	Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angewandte Chemie - International Edition, 2020, 59, 16764-16769.	7.2	105
111	The coordination chemistry of N-heterocyclic carboxylic acid: A comparison of the coordination polymers constructed by 4,5-imidazoledicarboxylic acid and 1H-1,2,3-triazole-4,5-dicarboxylic acid. Coordination Chemistry Reviews, 2017, 352, 108-150.	9.5	104
112	A metal–metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO ₂ with aziridines. Chemical Communications, 2018, 54, 1170-1173.	2.2	104
113	Gas adsorption applications of porous metal–organic frameworks. Pure and Applied Chemistry, 2009, 81, 2235-2251.	0.9	101
114	A Robust Highly Interpenetrated Metalâ^'Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules. Inorganic Chemistry, 2010, 49, 8444-8448.	1.9	100
115	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 2015, 11, 600-610.	8.2	100
116	Boosting Catalytic Performance of Metal–Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS Applied Materials & Interfaces, 2017, 9, 34937-34943.	4.0	100
117	Cucurbit[7]uril: an amorphous molecular material for highly selective carbon dioxide uptake. Chemical Communications, 2011, 47, 7626.	2.2	99
118	Fabrication of Lightâ€Triggered Soft Artificial Muscles via a Mixedâ€Matrix Membrane Strategy. Angewandte Chemie - International Edition, 2018, 57, 10192-10196.	7.2	98
119	Microporous lanthanide metal-organic frameworks. Reviews in Inorganic Chemistry, 2012, 32, 81-100.	1.8	96
120	Superhydrophobicity: Constructing Homogeneous Catalysts into Superhydrophobic Porous Frameworks to Protect Them from Hydrolytic Degradation. CheM, 2016, 1, 628-639.	5.8	93
121	Opportunities of Porous Organic Polymers for Radionuclide Sequestration. Trends in Chemistry, 2019, 1, 292-303.	4.4	93
122	Quest for highly porous metal–metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. Chemical Communications, 2012, 48, 7173.	2.2	92
123	Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin. Chemical Science, 2012, 3, 2823.	3.7	92
124	Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery. ACS Applied Materials & Interfaces, 2019, 11, 30919-30926.	4.0	91
125	Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. Journal of Materials Chemistry A, 2019, 7, 13585-13590.	5.2	91
126	Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm, 2015, 17, 10-22.	1.3	89

#	Article	IF	CITATIONS
127	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie - International Edition, 2021, 60, 9680-9685.	7.2	89
128	Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 7420-7424.	7.2	85
129	Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019, 10, 819.	5.8	84
130	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie - International Edition, 2020, 59, 4354-4359.	7.2	84
131	A nanotubular metal–organic framework with permanent porosity: structure analysis and gas sorption studies. Chemical Communications, 2009, , 4049.	2.2	83
132	Coordination-Driven Polymerization of Supramolecular Nanocages. Journal of the American Chemical Society, 2015, 137, 14873-14876.	6.6	83
133	Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. Journal of the American Chemical Society, 2019, 141, 14443-14450.	6.6	83
134	Photomechanical Organic Crystals as Smart Materials for Advanced Applications. Chemistry - A European Journal, 2019, 25, 5611-5622.	1.7	83
135	Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials, 2022, 281, 121322.	5.7	83
136	Formation of a Metalloporphyrinâ€Based Nanoreactor by Postsynthetic Metal–Ion Exchange of a Polyhedralâ€Cage Containing a Metal–Metalloporphyrin Framework. Chemistry - A European Journal, 2013, 19, 3297-3301.	1.7	82
137	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
138	Imparting Ion Selectivity to Covalent Organic Framework Membranes Using <i>de Novo</i> Assembly for Blue Energy Harvesting. Journal of the American Chemical Society, 2021, 143, 9415-9422.	6.6	82
139	Porous Metal-Organic Frameworks Based on an Anthracene Derivative: Syntheses, Structure Analysis, and Hydrogen Sorption Studies. Inorganic Chemistry, 2009, 48, 5263-5268.	1.9	81
140	Anchoring Triazole-Gold(I) Complex into Porous Organic Polymer To Boost the Stability and Reactivity of Gold(I) Catalyst. ACS Catalysis, 2017, 7, 1087-1092.	5.5	80
141	A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Materials Chemistry Frontiers, 2017, 1, 1310-1316.	3.2	78
142	A pillared metal–organic framework incorporated with 1,2,3-triazole moieties exhibiting remarkable enhancement of CO2 uptake. Chemical Communications, 2012, 48, 8898.	2.2	77
143	Ultrahigh and economical uranium extraction from seawater <i>via</i> interconnected open-pore architecture poly(amidoxime) fiber. Journal of Materials Chemistry A, 2020, 8, 22032-22044.	5.2	77
144	A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chemical Communications, 2013, 49, 10269.	2.2	76

#	Article	IF	CITATIONS
145	Covalent Heme Framework as a Highly Active Heterogeneous Biomimetic Oxidation Catalyst. Chemistry of Materials, 2014, 26, 1639-1644.	3.2	76
146	Rb _j M _k [Fe(CN) ₆] _l (M = Co, Ni) Prussian Blue Analogue Hollow Nanocubes: a New Example of a Multilevel Pore System. Chemistry of Materials, 2013, 25, 42-47.	3.2	74
147	Novel coordination polymers of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) tuned by different aromatic polycarboxylates: synthesis, structures and photocatalytic properties. CrystEngComm, 2014, 16, 6408-6416.	1.3	74
148	Skeleton Engineering of Homocoupled Conjugated Microporous Polymers for Highly Efficient Uranium Capture via Synergistic Coordination. ACS Applied Materials & Interfaces, 2020, 12, 3688-3696.	4.0	74
149	A hierarchical porous ionic organic polymer as a new platform for heterogeneous phase transfer catalysis. Journal of Materials Chemistry A, 2015, 3, 23871-23875.	5.2	73
150	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	3.2	72
151	Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment. Chemical Science, 2016, 7, 2138-2144.	3.7	72
152	Investigation of Gas Adsorption Performances and H2Affinities of Porous Metal-Organic Frameworks with Different Entatic Metal Centers. Inorganic Chemistry, 2009, 48, 5398-5402.	1.9	71
153	Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nature Communications, 2021, 12, 1844.	5.8	71
154	Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nature Communications, 2018, 9, 3236.	5.8	70
155	Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites. Nature Communications, 2020, 11, 5456.	5.8	68
156	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
157	A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conjugated Ligand Exhibiting a High Hydrogen Uptake Capacity. Inorganic Chemistry, 2009, 48, 7519-7521.	1.9	66
158	Anionic Metal–Organic Framework for Selective Dye Removal and CO ₂ Fixation. European Journal of Inorganic Chemistry, 2016, 2016, 4373-4377.	1.0	66
159	General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS Nano, 2018, 12, 4594-4604.	7.3	66
160	Covalent Organic Framework Decorated with Vanadium as a New Platform for Prins Reaction and Sulfide Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 3070-3079.	4.0	66
161	Mapping out the Degree of Freedom of Hosted Enzymes in Confined Spatial Environments. CheM, 2019, 5, 3184-3195.	5.8	62
162	Tuning ethylene gas adsorption via metal node modulation: Cu-MOF-74 for a high ethylene deliverable capacity. Chemical Communications, 2017, 53, 9376-9379.	2.2	59

#	Article	IF	CITATIONS
163	Proteinâ€Structureâ€Directed Metal–Organic Zeoliteâ€like Networks as Biomacromolecule Carriers. Angewandte Chemie - International Edition, 2020, 59, 6263-6267.	7.2	59
164	Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter, 2021, 4, 2027-2038.	5.0	59
165	Reticular Synthesis of a Series of HKUST-like MOFs with Carbon Dioxide Capture and Separation. Inorganic Chemistry, 2016, 55, 9071-9076.	1.9	58
166	Hydrogen-Bonding-Driven 3D Supramolecular Assembly of Peptidomimetic Zipper. Journal of the American Chemical Society, 2018, 140, 5661-5665.	6.6	57
167	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie - International Edition, 2020, 59, 19618-19622.	7.2	57
168	Fabrication of Photoresponsive Crystalline Artificial Muscles Based on PEGylated Covalent Organic Framework Membranes. ACS Central Science, 2020, 6, 787-794.	5.3	57
169	Dual Functionalized Cages in Metal–Organic Frameworks via Stepwise Postsynthetic Modification. Chemistry of Materials, 2016, 28, 4781-4786.	3.2	55
170	Two homochiral organocatalytic metal organic materials with nanoscopic channels. Chemical Communications, 2013, 49, 7693.	2.2	54
171	Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo ₂ C nanostructures. Chemical Science, 2020, 11, 3523-3530.	3.7	54
172	Hollow capsules of doped carbon incorporating metal@metal sulfide and metal@metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3624-3631.	5.2	53
173	Porous Double-Walled Metal Triazolate Framework Based upon a Bifunctional Ligand and a Pentanuclear Zinc Cluster Exhibiting Selective CO ₂ Uptake. Inorganic Chemistry, 2012, 51, 4423-4425.	1.9	52
174	Nanoporous Carbons Derived from Metalâ€Organic Frameworks as Novel Matrices for Surfaceâ€Assisted Laser Desorption/Ionization Mass Spectrometry. Small, 2016, 12, 2057-2066.	5.2	51
175	Improved catalytic activity on the thermal decomposition of ammonium perchlorate and efficient adsorption of uranium using a novel ultra-low density Al2O3-based aerogels. Journal of Hazardous Materials, 2020, 387, 122015.	6.5	50
176	Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 5604.	6.7	49
177	A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€ŧrap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie, 2021, 133, 5343-5348.	1.6	49
178	Nanospace Decoration with Uranyl-Specific "Hooks―for Selective Uranium Extraction from Seawater with Ultrahigh Enrichment Index. ACS Central Science, 2021, 7, 1650-1656.	5.3	49
179	Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nature Communications, 2022, 13, 2132.	5.8	49
180	The local electric field favours more than exposed nitrogen atoms on CO ₂ capture: a case study on the rht -type MOF platform. Chemical Communications, 2015, 51, 9636-9639.	2.2	48

#	Article	IF	CITATIONS
181	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{III} â€based Macrocyclic Framework. Angewandte Chemie - International Edition, 2021, 60, 23705-23712.	7.2	48
182	Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm, 2012, 14, 6115.	1.3	47
183	Investigation of Oxygen Reduction Activity of Catalysts Derived from Co and Co/Zn Methylâ€Imidazolate Frameworks in Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2016, 3, 1541-1545.	1.7	47
184	Understanding the Ion Transport Behavior across Nanofluidic Membranes in Response to the Charge Variations. Advanced Functional Materials, 2021, 31, 2009970.	7.8	47
185	Selfâ€Adjusting Metal–Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
186	Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Science Advances, 2022, 8, eabm4677.	4.7	47
187	Visualizing Structural Transformation and Guest Binding in a Flexible Metal–Organic Framework under High Pressure and Room Temperature. ACS Central Science, 2018, 4, 1194-1200.	5.3	46
188	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	3.2	46
189	The first ternary Nd-MOF/GO/Fe ₃ O ₄ nanocomposite exhibiting an excellent photocatalytic performance for dye degradation. Dalton Transactions, 2020, 49, 10745-10754.	1.6	46
190	Synthesis and characterizations of a magnesium metal–organic framework with a distorted (10,3)-a-net topology. Inorganic Chemistry Communication, 2007, 10, 220-222.	1.8	45
191	Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake. CrystEngComm, 2013, 15, 9320.	1.3	45
192	A Three-Dimensional Porous Metalâ ´`Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	1.9	44
193	Azamacrocyclic-based metal organic frameworks: Design strategies and applications. Polyhedron, 2018, 145, 154-165.	1.0	43
194	PEG@ZIF-8/PVDF Nanocomposite Membrane for Efficient Pervaporation Desulfurization via a Layer-by-Layer Technology. ACS Applied Materials & amp; Interfaces, 2020, 12, 20664-20671.	4.0	43
195	Spatial Engineering Direct Cooperativity between Binding Sites for Uranium Sequestration. Advanced Science, 2021, 8, 2001573.	5.6	43
196	Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 26431-26440.	4.0	43
197	Solventâ€Induced Cadmium(II) Metalâ€Organic Frameworks with Adjustable Guestâ€Evacuated Porosity: Application in the Controllable Assembly of MOFâ€Derived Porous Carbon Materials for Supercapacitors. Chemistry - A European Journal, 2017, 23, 15680-15693.	1.7	42
198	Chemical Detection Using a Metal–Organic Framework Single Crystal Coupled to an Optical Fiber. ACS Applied Materials & Interfaces, 2019, 11, 4393-4398.	4.0	42

#	Article	IF	CITATIONS
199	3D Cationic Polymeric Network Nanotrap for Efficient Collection of Perrhenate Anion from Wastewater. Small, 2021, 17, e2007994.	5.2	42
200	Inserting CO ₂ into Aryl Câ^'H Bonds of Metal–Organic Frameworks: CO ₂ Utilization for Direct Heterogeneous Câ^'H Activation. Angewandte Chemie, 2016, 128, 5562-5566.	1.6	41
201	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie - International Edition, 2020, 59, 6428-6434.	7.2	41
202	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, 8762-8767.	1.6	40
203	A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14, 512-517.	5.8	40
204	Introduction of cavities up to 4 nm into a hierarchically-assembled metal–organic framework using an angular, tetratopic ligand. Chemical Communications, 2010, 46, 5223.	2.2	39
205	Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environmental Pollution, 2019, 253, 39-48.	3.7	39
206	Robust Bimetallic Ultramicroporous Metal–Organic Framework for Separation and Purification of Noble Gases. Inorganic Chemistry, 2020, 59, 4868-4873.	1.9	39
207	New Approaches to Non-PGM Electrocatalysts Using Porous Framework Materials. ECS Transactions, 2010, 33, 579-586.	0.3	38
208	Thermal conductivity of a perovskite-type metal–organic framework crystal. Dalton Transactions, 2017, 46, 13342-13344.	1.6	38
209	Porous metal-metalloporphyrin gel as catalytic binding pocket for highly efficient synergistic catalysis. Nature Communications, 2019, 10, 1913.	5.8	38
210	Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Research, 2020, 13, 3377-3386.	5.8	38
211	Microporosity in Ordered Mesoporous Aluminosilicates Characterized by Catalytic Probing Reactions. Journal of Physical Chemistry B, 2003, 107, 1853-1857.	1.2	36
212	Improved catalytic activity and stability of mesostructured sulfated zirconia by Al promoter. Applied Catalysis A: General, 2004, 268, 17-24.	2.2	36
213	Quest for a highly connected robust porous metal–organic framework on the basis of a bifunctional linear linker and a rare heptanuclear zinc cluster. Chemical Communications, 2013, 49, 10516.	2.2	35
214	Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Materials, 2016, 8, e322-e322.	3.8	35
215	From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation. Chemical Communications, 2016, 52, 13897-13900.	2.2	34
216	Efficient Electron Transfer from Electronâ€Sponge Polyoxometalate to Singleâ€Metal Site Metal–Organic Frameworks for Highly Selective Electroreduction of Carbon Dioxide. Small, 2021, 17, e2100762.	5.2	34

#	Article	IF	CITATIONS
217	Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chemical Communications, 2015, 51, 4827-4829.	2.2	33
218	An effective strategy to boost the robustness of metal–organic frameworks via introduction of size-matching ligand braces. Chemical Communications, 2016, 52, 1971-1974.	2.2	33
219	Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 10264-10268.	1.6	33
220	Squaramide-decorated covalent organic framework as a new platform for biomimetic hydrogen-bonding organocatalysis. Chemical Communications, 2019, 55, 5423-5426.	2.2	33
221	Energy-related applications of functional porous metal–organic frameworks. Pure and Applied Chemistry, 2010, 83, 167-188.	0.9	32
222	Enhancing the biofuel upgrade performance for Pd nanoparticles via increasing the support hydrophilicity of metal–organic frameworks. Faraday Discussions, 2017, 201, 317-326.	1.6	32
223	A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angewandte Chemie, 2018, 130, 4747-4752.	1.6	32
224	Biomineralization-mimetic preparation of robust metal-organic frameworks biocomposites film with high enzyme load for electrochemical biosensing. Journal of Electroanalytical Chemistry, 2018, 823, 40-46.	1.9	31
225	Manipulating Charge Density in Nanofluidic Membranes for Optimal Osmotic Energy Production Density. Advanced Functional Materials, 2022, 32, 2109210.	7.8	31
226	Sulfonoâ€Î³â€AApeptides as a New Class of Nonnatural Helical Foldamer. Chemistry - A European Journal, 2015, 21, 2501-2507.	1.7	30
227	Partially Interpenetrated NbO Topology Metal–Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2017, 17, 2711-2717.	1.4	30
228	Fabrication of Lightâ€Triggered Soft Artificial Muscles via a Mixedâ€Matrix Membrane Strategy. Angewandte Chemie, 2018, 130, 10349-10353.	1.6	30
229	Structural Variation and Switchable Nonlinear Optical Behavior of Metal–Organic Frameworks. Small, 2021, 17, e2006649.	5.2	30
230	Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO ₂ . Green Chemistry, 2021, 23, 7620-7629.	4.6	30
231	Highly Stable Single Crystals of Threeâ€Dimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie - International Edition, 2021, 60, 14664-14670.	7.2	30
232	Regulation of the Degree of Interpenetration in Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 4.	3.0	29
233	Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chemical Communications, 2020, 56, 10631-10641.	2.2	29
234	Amide-Functionalized In-MOF for Effective Hydrocarbon Separation and CO ₂ Catalytic Fixation. Inorganic Chemistry, 2022, 61, 2679-2685.	1.9	29

#	Article	IF	CITATIONS
235	A Metal–Organic Framework Based Methane Nanoâ€ŧrap for the Capture of Coalâ€Mine Methane. Angewandte Chemie, 2019, 131, 10244-10247.	1.6	28
236	Secondary Sphere Effects on Porous Polymeric Organocatalysts for CO ₂ Transformations: Subtle Modifications Resulting in Superior Performance. ACS Applied Materials & Interfaces, 2020, 12, 32827-32833.	4.0	28
237	Indium–Organic Framework with <i>soc</i> Topology as a Versatile Catalyst for Highly Efficient One-Pot Strecker Synthesis of α-aminonitriles. ACS Applied Materials & Interfaces, 2021, 13, 52023-52033.	4.0	28
238	Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nature Communications, 2022, 13, .	5.8	28
239	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
240	Nanospace Engineering of Metalâ€Organic Frameworks for Heterogeneous Catalysis. ChemNanoMat, 2022, 8, .	1.5	27
241	Investigation of the Mesoporous Metal–Organic Framework as a New Platform To Study the Transport Phenomena of Biomolecules. ACS Applied Materials & Interfaces, 2017, 9, 10874-10881.	4.0	26
242	A Mixedâ€Metal Porphyrinic Framework Promoting Gasâ€Phase CO ₂ Photoreduction without Organic Sacrificial Agents. ChemSusChem, 2020, 13, 6273-6277.	3.6	26
243	Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation. Journal of Materials Chemistry A, 2021, 9, 23140-23148.	5.2	26
244	Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. , 2022, 2, 100032.		26
245	A new photoactive Ru(<scp>ii</scp>)tris(2,2′-bipyridine) templated Zn(<scp>ii</scp>) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties. Dalton Transactions, 2015, 44, 5331-5337.	1.6	25
246	Reversible Structural Transformations of Metal–Organic Frameworks as Artificial Switchable Catalysts for Dynamic Control of Selectively Cyanation Reaction. Chemistry - A European Journal, 2019, 25, 10366-10374.	1.7	25
247	COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale, 2020, 12, 21218-21224.	2.8	25
248	Singleâ€Pore versus Dualâ€Pore Bipyridineâ€Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective Cĩ£¿H Functionalization. Small, 2021, 17, e2003970.	5.2	25
249	A porous BrÃ,nsted superacid as an efficient and durable solid catalyst. Journal of Materials Chemistry A, 2018, 6, 18712-18719.	5.2	24
250	Iridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	2.2	24
251	Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chemical Science, 2019, 10, 6661-6665.	3.7	24
252	Open metal sites dangled on cobalt trigonal prismatic clusters within porous MOF for CO ₂ capture. Inorganic Chemistry Frontiers, 2015, 2, 369-372.	3.0	23

#	Article	IF	CITATIONS
253	Mussel-inspired polydopamine chemistry to modulate template synthesis of 1D metal–organic framework superstructures. Journal of Materials Chemistry A, 2018, 6, 21567-21576.	5.2	23
254	Heterogenization of Trinuclear Palladium Complex into an Anionic Metal–Organic Framework through Postsynthetic Cation Exchange. Organometallics, 2019, 38, 3460-3465.	1.1	23
255	Tunable nonlinear optical responses based on host-guest MOF hybrid materials. Science China Materials, 2021, 64, 698-705.	3.5	23
256	High proton selectivity membrane based on the keto-linked cationic covalent organic framework for acid recovery. Journal of Membrane Science, 2021, 640, 119800.	4.1	23
257	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	2.2	23
258	POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous and Mesoporous Materials, 2014, 193, 35-39.	2.2	22
259	Improved interfacial floatability of superhydrophobic and compressive S, N co-doped graphene aerogel by electrostatic spraying for highly efficient organic pollutants recovery from water. Applied Surface Science, 2018, 457, 780-788.	3.1	22
260	Defect engineering of enzyme-embedded metal–organic frameworks for smart cargo release. Chemical Engineering Journal, 2022, 439, 135736.	6.6	22
261	Nanorods Formed from a New Class of Peptidomimetics. Macromolecules, 2012, 45, 7350-7355.	2.2	20
262	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie, 2018, 130, 16996-17001.	1.6	20
263	Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 7498-7502.	1.6	20
264	Postsynthetic Oxidation of the Coordination Site in a Heterometallic Metal–Organic Framework: Tuning Catalytic Behaviors. Chemistry of Materials, 2020, 32, 5192-5199.	3.2	20
265	De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment. Nano Research, 2021, 14, 788-796.	5.8	20
266	Copper(I)-modified covalent organic framework for CO2 insertion to terminal alkynes. Molecular Catalysis, 2021, 499, 111319.	1.0	20
267	Functional Porphyrinic Metal–Organic Framework as a New Class of Heterogeneous Halogenâ€Bondâ€Donor Catalyst. Angewandte Chemie - International Edition, 2021, 60, 24312-24317.	7.2	20
268	Imparting BrÃ,nsted acidity into a zeolitic imidazole framework. Inorganic Chemistry Frontiers, 2016, 3, 393-396.	3.0	19
269	Bio-inspired creation of heterogeneous reaction vessels via polymerization of supramolecular ion pair. Nature Communications, 2019, 10, 3059.	5.8	19
270	Acid–base directed supramolecular isomers of isophthalate based MOFs for CO ₂ adsorption and transformation. CrystEngComm, 2017, 19, 4171-4174.	1.3	18

#	Article	lF	CITATIONS
271	Microporous Cyclen-Based Octacarboxylate Hydrogen-Bonded Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2019, 19, 6377-6380.	1.4	18
272	Advanced Photoemission Spectroscopy Investigations Correlated with DFT Calculations on the Self-Assembly of 2D Metal Organic Frameworks Nano Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 31403-31412.	4.0	17
273	Cobalt nanoparticles incorporated into hollow doped porous carbon capsules as a highly efficient oxygen reduction electrocatalyst. Catalysis Science and Technology, 2018, 8, 5244-5250.	2.1	17
274	A recyclable indole-based polymer for trinitrotoluene adsorption <i>via</i> the synergistic effect of dipole–π and donor–acceptor interactions. Polymer Chemistry, 2019, 10, 4632-4636.	1.9	16
275	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie - International Edition, 2021, 60, 2974-2979.	7.2	16
276	Enhanced Ultrasensitive Photoelectrochemical Probe for Phosphate Detection in Water Based on a Zirconium–Porphyrin Framework. ACS Applied Materials & Interfaces, 2022, 14, 28280-28288.	4.0	16
277	Expanding the structural diversity of Bcr-Abl inhibitors: Dibenzoy piperazin incorporated with 1H-indazol-3-amine. European Journal of Medicinal Chemistry, 2015, 104, 139-147.	2.6	15
278	Investigation of a microporous iron(<scp>iii</scp>) porphyrin framework derived cathode catalyst in PEM fuel cells. Journal of Materials Chemistry A, 2016, 4, 15621-15630.	5.2	15
279	A window-space-directed assembly strategy for the construction of supertetrahedron-based zeolitic mesoporous metal–organic frameworks with ultramicroporous apertures for selective gas adsorption. Chemical Science, 2021, 12, 5767-5773.	3.7	15
280	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie, 2022, 134, .	1.6	15
281	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> â€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	1.0	14
282	Two highly porous single-crystalline zirconium-based metal-organic frameworks. Science China Chemistry, 2016, 59, 980-983.	4.2	14
283	A Robust Metal-Metalloporphyrin Framework Based upon a Secondary Building Unit of Infinite Nickel Oxide Chain. Crystal Growth and Design, 2016, 16, 1005-1009.	1.4	14
284	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
285	Facile and efficient photocatalyst for degradation of chlortetracycline promoted by H ₂ O ₂ . Inorganic Chemistry Frontiers, 2022, 9, 2952-2963.	3.0	14
286	The effect of surfactant-free TiO ₂ surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate. Journal Physics D: Applied Physics, 2013, 46, 505316.	1.3	13
287	Comparison of the use of functional porous organic polymer (POP) and natural material zeolite for nitrogen removal and recovery from source-separated urine. Journal of Environmental Chemical Engineering, 2020, 8, 104296.	3.3	13
288	Beyond Custom Design of Organic Ligands: An Integrative Strategy for Metal-Organic Frameworks Design. Comments on Inorganic Chemistry, 2014, 34, 125-141.	3.0	12

#	Article	IF	CITATIONS
289	The synthesis of head-to-tail cyclic sulfono-γ-AApeptides. Organic and Biomolecular Chemistry, 2015, 13, 672-676.	1.5	12
290	Recent advances in fabrication strategies and protein preservation application of protein-nanomaterial hybrids: Integration and synergy. TrAC - Trends in Analytical Chemistry, 2019, 118, 434-443.	5.8	12
291	In situ monitoring of protein transfer into nanoscale channels. Cell Reports Physical Science, 2021, 2, 100576.	2.8	12
292	Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry - A European Journal, 2022, , .	1.7	12
293	Creating extra pores in microporous carbon via a template strategy for a remarkable enhancement of ambient-pressure CO2uptake. Chemical Communications, 2015, 51, 8683-8686.	2.2	11
294	Synthesis, Characterization, and Investigation of the Antimicrobial Activity of Cetylpyridinium Tetrachlorozincate. ACS Omega, 2020, 5, 10359-10365.	1.6	11
295	Post-synthetic transformation of a Zn(<scp>ii</scp>) polyhedral coordination network into a new supramolecular isomer of HKUST-1. Chemical Communications, 2017, 53, 8866-8869.	2.2	10
296	A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium. Angewandte Chemie, 2020, 132, 19786-19790.	1.6	10
297	Metalloenzyme Mimicry at the Nodes of Metal-Organic Frameworks. CheM, 2018, 4, 2736-2738.	5.8	9
298	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie, 2021, 133, 9766-9771.	1.6	9
299	Two Manganese Metalloporphyrin Frameworks Constructed from a Custom-Designed Porphyrin Ligand Exhibiting Selective Uptake of CO ₂ over CH ₄ and Catalytic Activity for CO ₂ Fixation. Crystal Growth and Design, 2021, 21, 2786-2792.	1.4	9
300	Efficient collection of perrhenate anions from water using poly(pyridinium salts) <i>via</i> pyrylium mediated transformation. Polymer Chemistry, 2022, 13, 156-160.	1.9	9
301	Magnetic properties of a noninterpenetrating chiral porous cobalt metal-organic framewok. Journal of Applied Physics, 2007, 101, 09E108.	1.1	8
302	Construction of four coordination polymers with helical character based on a flexible bis(triazole) derivative and dicarboxylate coligands. Inorganica Chimica Acta, 2013, 405, 318-325.	1.2	8
303	Metal–Metalloporphyrin Framework Modified with Flexible <i>tert</i> â€Butyl Groups for Selective Gas Adsorption. ChemPlusChem, 2016, 81, 714-717.	1.3	8
304	Secondâ€Sphere Interaction Promoted Turnâ€On Fluorescence for Selective Sensing of Organic Amines in a Tb ^{III} â€based Macrocyclic Framework. Angewandte Chemie, 2021, 133, 23898-23905.	1.6	8
305	Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle. Molecules, 2019, 24, 2284.	1.7	7
306	Optimizing the performance of porous pyridinium frameworks for carbon dioxide transformation. Catalysis Today, 2020, 356, 557-562.	2.2	7

#	Article	IF	CITATIONS
307	Highly Stable Single Crystals of Threeâ€Dimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie, 2021, 133, 14785-14791.	1.6	7
308	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	2.6	7
309	A lanthanide metal-organic framework based on a custom-designed macrocyclic ligand. Journal of Coordination Chemistry, 2016, 69, 1844-1851.	0.8	6
310	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
311	Synthesis, Characterization, and Antimicrobial Investigation of a Novel Chlorhexidine Cyclamate Complex. Crystal Growth and Design, 2020, 20, 4991-4999.	1.4	6
312	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie, 2020, 132, 4384-4389.	1.6	6
313	Flexible thiourea linked covalent organic frameworks. CrystEngComm, 2021, 23, 7576-7580.	1.3	6
314	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie, 2020, 132, 6490-6496.	1.6	5
315	Regulation of the degree of interpenetration in metal-organic frameworks. Topics in Current Chemistry Collections, 2020, , 89-133.	0.2	5
316	Selfâ€Adjusting Metal–Organic Framework for Efficient Capture of Trace Xenon and Krypton. Angewandte Chemie, 2022, 134, .	1.6	5
317	Precise modification of poly(aryl ether ketone sulfone) proton exchange membranes with positively charged bismuth oxide clusters for high proton conduction performance. SusMat, 2022, 2, 76-89.	7.8	5
318	Cetylpyridinium Trichlorostannate: Synthesis, Antimicrobial Properties, and Controlled-Release Properties via Electrical Resistance Tomography. ACS Omega, 2021, 6, 35433-35441.	1.6	5
319	Preparation of Magnetic Porous Aromatic Framework for Rapid and Efficient Removal of Organic Pollutants from Water. Analytical Sciences, 2020, 36, 1157-1161.	0.8	4
320	Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst. Chemical Research in Chinese Universities, 2020, 36, 1128-1135.	1.3	3
321	Cationic porous aromatic framework with hierarchical structure for selective, rapid and efficient removal of anionic dyes from water. SN Applied Sciences, 2020, 2, 1.	1.5	3
322	Intrinsic adsorption behaviour related to the structural and mechanical properties of flexible metal-organic frameworks Co(bdp). Computational Materials Science, 2020, 177, 109543.	1.4	3
323	Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks. Chemical Research in Chinese Universities, 2022, 38, 639-642.	1.3	3
324	Sensing and sequestration of inorganic cationic pollutants by metal-organic frameworks. , 2019, , 63-93.		2

#	Article	IF	CITATIONS
325	Beyond confined catalysis in porous materials. National Science Review, 2020, 7, 994-995.	4.6	2
326	Functional Porphyrinic Metalâ€Organic Framework as a New Class of Heterogeneous Halogen Bond Donor Catalyst. Angewandte Chemie, 2021, 133, 24514.	1.6	2
327	Biomimetic iron-imidazole sites into metal organic framework nanoflowers as high-affinity peroxidase mimic for colorimetric biosensing. Microchemical Journal, 2022, 175, 107064.	2.3	2
328	Frontispiz: Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, .	1.6	1
329	Frontispiz: A MOFâ€based Ultraâ€Strong Acetylene Nanoâ€trap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie, 2021, 133, .	1.6	1
330	Frontispiece: Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
331	Frontispiece: Photomechanical Organic Crystals as Smart Materials for Advanced Applications. Chemistry - A European Journal, 2019, 25, .	1.7	0
332	Innenrücktitelbild: A Metal–Organic Framework Based Methane Nanoâ€ŧrap for the Capture of Coalâ€Mine Methane (Angew. Chem. 30/2019). Angewandte Chemie, 2019, 131, 10483-10483.	1.6	0
333	Rücktitelbild: A Porous Organic Polymer Nanotrap for Efficient Extraction of Palladium (Angew.) Tj ETQq1 1 0.7	84314 rgE	BT_Overlock
334	Frontispiece: A MOFâ€based Ultra‣trong Acetylene Nanoâ€ŧrap for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
335	Innenrücktitelbild: Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites (Angew. Chem. 3/2022). Angewandte Chemie, 2022, 134, .	1.6	0