Xianyun Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3304189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy, 2019, 61, 420-427.	16.0	318
2	Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nature Communications, 2021, 12, 238.	12.8	169
3	Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Research, 2021, 14, 1374-1381.	10.4	148
4	Trifunctional Singleâ€Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small, 2020, 16, e2002888.	10.0	120
5	Efficient and stable electroreduction of CO ₂ to CH ₄ on CuS nanosheet arrays. Journal of Materials Chemistry A, 2017, 5, 20239-20243.	10.3	119
6	Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano, 2020, 14, 6938-6946.	14.6	119
7	Singleâ€Atom Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 2963-2974.	3.4	89
8	AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO ₂ to Ethanol. Small, 2019, 15, e1902229.	10.0	83
9	Porous Mnâ€Doped FeP/Co ₃ (PO ₄) ₂ Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. ChemSusChem, 2019, 12, 1334-1341.	6.8	78
10	Electrochemical CO ₂ reduction: from nanoclusters to single atom catalysts. Sustainable Energy and Fuels, 2020, 4, 1012-1028.	4.9	69
11	High Selectivity Toward C ₂ H ₄ Production over Cu Particles Supported by Butterfly-Wing-Derived Carbon Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 12618-12625.	8.0	60
12	Engineering Atomic Sites via Adjacent Dualâ€Metal Subâ€Nanoclusters for Efficient Oxygen Reduction Reaction and Znâ€Air Battery. Small, 2020, 16, e2004855.	10.0	53
13	Selective Electroreduction of CO ₂ to C2 Products over Cu ₃ Nâ€Derived Cu Nanowires. ChemElectroChem, 2019, 6, 2393-2397.	3.4	49
14	Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO ₂ RR to formate. Journal of Materials Chemistry A, 2018, 6, 18960-18966.	10.3	46
15	Efficient Electroreduction CO ₂ to CO over MnO ₂ Nanosheets. Inorganic Chemistry, 2019, 58, 8910-8914.	4.0	34
16	Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol. Journal of Materials Chemistry A, 2020, 8, 8913-8919.	10.3	33
17	Singleâ€Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions. Chemistry - an Asian Journal, 2019, 14, 2770-2779.	3.3	32
18	Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale, 2021, 13, 4767-4773.	5.6	26

XIANYUN PENG

#	Article	IF	CITATIONS
19	Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale, 2021, 13, 7134-7139.	5.6	26
20	Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors. Royal Society Open Science, 2018, 5, 180842.	2.4	23
21	Nitrogen doping and titanium vacancies synergistically promote CO ₂ fixation in seawater. Nanoscale, 2020, 12, 17191-17195.	5.6	23
22	Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detection of nitrobenzene. RSC Advances, 2021, 11, 28988-28995.	3.6	19
23	Selective Formation of C2 Products from Electrochemical CO ₂ Reduction over Cu _{1.8} Se Nanowires. ACS Applied Energy Materials, 0, , .	5.1	11
24	Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction. ChemNanoMat, 2020, 6, 1474-1478.	2.8	7
25	Ethanolâ€Selectivity: AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective	10.0	3