
Alessandro Scano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3303903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed matrix factorization: a novel algorithm for the extraction of kinematic-muscular synergies. Journal of Neurophysiology, 2022, 127, 529-547.	1.8	24
2	Whole-Body Adaptive Functional Electrical Stimulation Kinesitherapy Can Promote the Restoring of Physiological Muscle Synergies for Neurological Patients. Sensors, 2022, 22, 1443.	3.8	2
3	Optimal Biomechanical Performance in Upper-Limb Gestures Depends on Velocity and Carried Load. Biology, 2022, 11, 391.	2.8	3
4	Evaluation of Methods for the Extraction of Spatial Muscle Synergies. Frontiers in Neuroscience, 2022, 16, .	2.8	2
5	Detailed characterization of physiological EMG activations and directional tuning of upper-limb and trunk muscles in point-to-point reaching movements. Current Research in Physiology, 2021, 4, 60-72.	1.7	17
6	Mother-Infant Interaction Kinect Analysis (MIIKA): An automatic kinematic-based methodology for the investigation of interpersonal distance during early exchanges. , 2021, 63, 101567.		6
7	A human-driven control architecture for promoting good mental health in collaborative robot scenarios. , 2021, , .		7
8	Intra-Subject and Inter-Subject Movement Variability Quantified with Muscle Synergies in Upper-Limb Reaching Movements. Biomimetics, 2021, 6, 63.	3.3	22
9	What Children with Neuromotor Disabilities Need to Play with Technological Games. Applied Sciences (Switzerland), 2021, 11, 9886.	2.5	5
10	Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applications: A Systematic Review. Sensors, 2021, 21, 7014.	3.8	24
11	Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study. Sensors, 2021, 21, 7500.	3.8	6
12	Variability of Muscle Synergies in Hand Grasps: Analysis of Intra- and Inter-Session Data. Sensors, 2020, 20, 4297.	3.8	28
13	Analysis of Upper-Limb and Trunk Kinematic Variability: Accuracy and Reliability of an RGB-D Sensor. Multimodal Technologies and Interaction, 2020, 4, 14.	2.5	19
14	An Experimental Evaluation of the Proto-MATE: A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers' Physical Strain. IEEE Robotics and Automation Magazine, 2020, 27, 54-65.	2.0	65
15	The "Arm―Line of Devices for Neurological Rehabilitation. , 2020, , 394-423.		0
16	NIRS-EMG for Clinical Applications: A Systematic Review. Applied Sciences (Switzerland), 2019, 9, 2952.	2.5	20
17	A Comprehensive Spatial Mapping of Muscle Synergies in Highly Variable Upper-Limb Movements of Healthy Subjects. Frontiers in Physiology, 2019, 10, 1231.	2.8	54
18	Kinematic synergies of hand grasps: a comprehensive study on a large publicly available dataset. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 63.	4.6	52

ALESSANDRO SCANO

#	Article	IF	CITATIONS
19	Low-Cost Tracking Systems Allow Fine Biomechanical Evaluation of Upper-Limb Daily-Life Gestures in Healthy People and Post-Stroke Patients. Sensors, 2019, 19, 1224.	3.8	28
20	Kinect V2 implementation and testing of the reaching performance scale for motor evaluation of patients with neurological impairment. Medical Engineering and Physics, 2018, 56, 54-58.	1.7	28
21	A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation. Applied Sciences (Switzerland), 2018, 8, 2248.	2.5	24
22	DUALarm: An open-source and 3D-printable device for upper limb neurorehabilitation. Journal of Rehabilitation and Assistive Technologies Engineering, 2018, 5, 205566831774998.	0.9	2
23	Muscle Synergy Analysis of a Hand-Grasp Dataset: A Limited Subset of Motor Modules May Underlie a Large Variety of Grasps. Frontiers in Neurorobotics, 2018, 12, 57.	2.8	22
24	Robotic Assistance for Upper Limbs May Induce Slight Changes in Motor Modules Compared With Free Movements in Stroke Survivors: A Cluster-Based Muscle Synergy Analysis. Frontiers in Human Neuroscience, 2018, 12, 290.	2.0	14
25	Assessing User Transparency with Muscle Synergies during Exoskeleton-Assisted Movements: A Pilot Study on the LIGHTarm Device for Neurorehabilitation. Applied Bionics and Biomechanics, 2018, 2018, 1-10.	1.1	5
26	The "Arm―Line of Devices for Neurological Rehabilitation. Advances in Computational Intelligence and Robotics Book Series, 2018, , 161-190.	0.4	0
27	Quantitative EEG for Predicting Upper Limb Motor Recovery in Chronic Stroke Robot-Assisted Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1058-1067.	4.9	55
28	Muscle Synergies-Based Characterization and Clustering of Poststroke Patients in Reaching Movements. Frontiers in Bioengineering and Biotechnology, 2017, 5, 62.	4.1	28
29	Kinect V2 Performance Assessment in Daily-Life Gestures: Cohort Study on Healthy Subjects for a Reference Database for Automated Instrumental Evaluations on Neurological Patients. Applied Bionics and Biomechanics, 2017, 2017, 1-16.	1.1	48
30	Using robot fully assisted functional movements in upper-limb rehabilitation of chronic stroke patients: preliminary results. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 390-399.	2.2	10
31	Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement. BioMed Research International, 2016, 2016, 1-11.	1.9	15
32	A Kinect-Based Biomechanical Assessment of Neurological Patients' Motor Performances for Domestic Rehabilitation. Advances in Medical Technologies and Clinical Practice Book Series, 2016, , 252-279.	0.3	4
33	Kinect One-based biomechanical assessment of upper-limb performance compared to clinical scales in post-stroke patients. , 2015, 2015, 5720-3.		10
34	Static and dynamic characterization of the LIGHTarm exoskeleton for rehabilitation. , 2015, , .		8