Che Ming Ko ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/3303871/publications.pdf Version: 2024-02-01 66911 109321 6,111 93 35 78 h-index citations g-index papers 93 93 93 3342 docs citations times ranked citing authors all docs | # | Article | lF | CITATIONS | |----------|---|-------------------|-----------| | 1 | Evolution of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi
mathvariant="normal">Î></mml:mi
</mml:math> polarization in the hadronic phase of heavy-ion
collisions. Physical Review C, 2022, 105, . | 2.9 | 16 | | 2 | Effects of QCD critical point on light nuclei production. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 816, 136258. | 4.1 | 12 | | 3 | Light nuclei production in a multiphase transport model for relativistic heavy ion collisions. Physical
Review C, 2021, 103, . | 2.9 | 25 | | 4 | Multiplicity scaling of light nuclei production in relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 820, 136571. | 4.1 | 24 | | 5 | Elliptic flow splittings in the Polyakov–Nambu–Jona-Lasinio transport model. Physical Review C, 2021, 104, . | 2.9 | 1 | | 6 | Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order chiral phase transition. European Physical Journal A, 2021, 57, 1. | 2.5 | 6 | | 7 | Spin Polarizations in a Covariant Angular-Momentum-Conserved Chiral Transport Model. Physical Review Letters, 2020, 125, 062301. | 7.8 | 59 | | 8 | Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model. Physical Review C, 2020, 102, . | 2.9 | 12 | | 9 | xmlns:mml="http://www.w3.org/1998/Math/MathML" 'display="inline"> <mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Pb</mml:mi><mml:msort><mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:mi></mml:msort></mml:mrow> | 7.0 | 04 | | 10 | Physical Review Letters, 2020, 125, 072301. Beam-energy dependence of the production of light nuclei in Au + Au collisions. Physical Review C, 2020, 102, . | 2.9 | 26 | | 11 | Probing QCD critical fluctuations from the yield ratio of strange hadrons in relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 801, 135177. | 4.1 | 9 | | 12 | | | | | | Constraining the in-medium nucleon-nucleon cross section from the width of nuclear giant dipole resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135532. | 4.1 | 14 | | 13 | resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, | 4.1 | 9 | | 13
14 | resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135532. Properties of strange quark stars with isovector interactions. Physics Letters, Section B: Nuclear, | | | | | resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135532. Properties of strange quark stars with isovector interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135343. Yield ratio of hypertriton to light nuclei in heavy-ion collisions from = 4.9 GeV to 2.76 TeV *. Chinese | 4.1 | 9 | | 14 | resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135532. Properties of strange quark stars with isovector interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135343. Yield ratio of hypertriton to light nuclei in heavy-ion collisions from = 4.9 GeV to 2.76 TeV *. Chinese Physics C, 2020, 44, 114001. Nuclear matter properties at finite temperatures from effective interactions. Physical Review C, 2019, | 3.7 | 9 | | 14
15 | resonance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 807, 135532. Properties of strange quark stars with isovector interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135343. Yield ratio of hypertriton to light nuclei in heavy-ion collisions from = 4.9 GeV to 2.76 TeV *. Chinese Physics C, 2020, 44, 114001. Nuclear matter properties at finite temperatures from effective interactions. Physical Review C, 2019, 100, . Comparison of heavy-ion transport simulations: Collision integral with pions and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi< td=""><td>4.1
3.7
2.9</td><td>9 10 9</td></mml:mi<></mml:math> | 4.1
3.7
2.9 | 9 10 9 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions. Physical Review C, 2019, 99, . | 2.9 | 43 | | 20 | Effects of energy conservation on equilibrium properties of hot asymmetric nuclear matter. Physical Review C, $2018, 97, .$ | 2.9 | 16 | | 21 | Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL
Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Physical Review C, 2018, 98, . | 2.9 | 34 | | 22 | Light nuclei production in Pb+Pb collisions at $\frac{s_{NN}} = 2.76$ s N N = 2 European Physical Journal A, 2018, 54, 1. | 2.5 | 7 | | 23 | Chiral kinetic approach to the chiral magnetic effect in isobaric collisions. Physical Review C, 2018, 98, | 2.9 | 31 | | 24 | Light nuclei production as a probe of the QCD phase diagram. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 781, 499-504. | 4.1 | 74 | | 25 | Exotic hadrons from heavy ion collisions. Progress in Particle and Nuclear Physics, 2017, 95, 279-322. | 14.4 | 104 | | 26 | Spinodal instabilities of baryon-rich quark matter in heavy ion collisions. Physical Review C, 2017, 95, . | 2.9 | 18 | | 27 | <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi< p=""> mathvariant="normal">\hat{i} /mml:mi></mml:mi<></mml:math> hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach. Physical Review C, 2017, 96, . | 2.9 | 89 | | 28 | Chemical freeze-out in relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 772, 290-293. | 4.1 | 18 | | 29 | Chiral vortical and magnetic effects in the anomalous transport model. Physical Review C, 2017, 95, . | 2.9 | 24 | | 30 | Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 103-107. | 4.1 | 75 | | 31 | Elliptic flow of light nuclei. Physical Review C, 2017, 95, . | 2.9 | 17 | | 32 | Medium effects on pion production in heavy ion collisions. Physical Review C, 2017, 95, . | 2.9 | 40 | | 33 | Collision energy dependence of elliptic flow splitting between particles and their antiparticles from an extended multiphase transport model. Physical Review C, 2016, 94, . | 2.9 | 14 | | 34 | Anomalous transport model study of chiral magnetic effects in heavy ion collisions. Physical Review C, 2016, 94, . | 2.9 | 35 | | 35 | Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov–Nambu–Jona-Lasinio model.
Physical Review C, 2016, 93, . | 2.9 | 16 | | 36 | Jet fragmentation via recombination of parton showers. Physical Review C, 2016, 93, . | 2.9 | 38 | | # | Article | IF | CITATIONS | |----|--|------------------------|---| | 37 | Density fluctuations in baryon-rich quark matter. Nuclear Science and Techniques/Hewuli, 2016, 27, 1. | 3.4 | 13 | | 38 | Light (anti-)nuclei production and flow in relativistic heavy-ion collisions. Physical Review C, 2015, 92, | 2.9 | 56 | | 39 | Modifications of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy. Physical Review C, 2015 , 91 , . | 2.9 | 60 | | 40 | Quarkonium formation time in relativistic heavy-ion collisions. Physical Review C, 2015, 91, . | 2.9 | 11 | | 41 | Free energy versus internal energy potential for heavy-quark systems at finite temperature. Physical Review D, 2014, 89, . | 4.7 | 21 | | 42 | Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter. European Physical Journal A, 2014, 50, 1. | 2.5 | 37 | | 43 | Elliptic Flow Splitting as a Probe of the QCD Phase Structure at Finite Baryon Chemical Potential.
Physical Review Letters, 2014, 112, 012301. | 7.8 | 56 | | 44 | Partonic mean-field effects on matter and antimatter elliptic flows. Nuclear Physics A, 2014, 928, 234-246. | 1.5 | 33 | | 45 | Quarkonia production in heavy ion collisions. Nuclear Physics A, 2013, 910-911, 474-477. | 1.5 | 2 | | 46 | Quarkonium formation time in quark-gluon plasma. Physical Review C, 2013, 87, . | 2.9 | 10 | | 47 | Energy dependence of pion in-medium effects on the <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"><mml:mrow><mml:msup><mml:mi>ï€</mml:mi><mml:mo>â^²</mml:mo></mml:msup><mml:n
in heavy-ion collisions. Physical Review C, 2013, 87, .</mml:n
</mml:mrow></mml:math
 | no <i>></i> < mm | l:m ³² <mml:m< td=""></mml:m<> | | 48 | Gluon dissociation of Jirbeyond the dipole approximation. Physical Review C, 2013, 88, . | 2.9 | 5 | | 49 | Effects of initial-state fluctuations on jet-energy loss. Physical Review C, 2013, 87, . | 2.9 | 4 | | 50 | Bottomonia suppression in relativistic heavy-ion collisions. Physical Review C, 2012, 85, . | 2.9 | 34 | | 51 | Charmonium production from nonequilibrium charm and anticharm quarks in quark-gluon plasma.
Physical Review C, 2012, 85, . | 2.9 | 19 | | 52 | Contributions of hyperon-hyperon scattering to subthreshold cascade production in heavy ion collisions. Physical Review C, 2012, 85, . | 2.9 | 35 | | 53 | Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions. Physical Review C, 2012, 85, . | 2.9 | 53 | | 54 | Exotics from Heavy Ion Collisions. , 2011, , . | | 1 | | # | Article | IF | CITATIONS | |----|---|--|---------------| | 55 | Charmonium production in relativistic heavy-ion collisions. Physical Review C, 2011, 84, . | 2.9 | 33 | | 56 | Dilepton production in schematic causal viscous hydrodynamics. Physical Review C, 2011, 83, . | 2.9 | 11 | | 57 | J/l production and elliptic flow in relativistic heavy-ion collisions. Physical Review C, 2011, 83, . | 2.9 | 27 | | 58 | Effects of triangular flow on di-hadron azimuthal correlations in relativistic heavy ion collisions. Physical Review C, 2011, 83, . | 2.9 | 60 | | 59 | Pb-Pb collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mi></mml:mi><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:msub><mml:msub></mml:msub><mml:msqrt><mml:msub></mml:msub></mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msub></mml:msub></mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mm< td=""><td>ni
2.9
5><mml:m< td=""><td>n>2</td></mml:m<></td></mm<></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msub></mml:mrow></mml:math> | ni
2.9
5> <mml:m< td=""><td>n>2</td></mml:m<> | n>2 | | 60 | Higher-order anisotropic flows and dihadron correlations in Pb-Pb collisions at <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><td>> 2.9
> < mml:mi</td><td>> 🕅 २ /mml:mi</td></mml:mrow></mml:msub></mml:msqrt></mml:mrow></mml:math> | > 2.9
> < mml:mi | > 🕅 २ /mml:mi | | 61 | Triangular flow in heavy ion collisions in a multiphase transport model. Physical Review C, 2011, 84, . | 2.9 | 76 | | 62 | Exotic hadrons in heavy ion collisions. Physical Review C, 2011, 84, . | 2.9 | 110 | | 63 | Isospin- and momentum-dependent effective interactions for the baryon octet and the properties of hybrid stars. Physical Review C, 2010, 81, . | 2.9 | 34 | | 64 | Density matrix expansion for the isospin- and momentum-dependent MDI interaction. Physical Review C, $2010, 82, .$ | 2.9 | 19 | | 65 | Isospin-dependent pion in-medium effects on the charged-pion ratio in heavy ion collisions. Physical
Review C, 2010, 81, . | 2.9 | 25 | | 66 | Transition density and pressure in hot neutron stars. Physical Review C, 2010, 81, . | 2.9 | 10 | | 67 | Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei.
Physical Review C, 2010, 82, . | 2.9 | 217 | | 68 | Nuclear modification factor of nonphotonic electrons in heavy-ion collisions, and the heavy-flavor baryon-to-meson ratio. Physical Review C, 2009, 79, . | 2.9 | 2 | | 69 | Deuteron production and elliptic flow in relativistic heavy ion collisions. Physical Review C, 2009, 80, | 2.9 | 53 | | 70 | Ratios of heavy baryons to heavy mesons in relativistic nucleus-nucleus collisions. Physical Review C, 2009, 79, . | 2.9 | 82 | | 71 | Higher-order effects on the incompressibility of isospin asymmetric nuclear matter. Physical Review C, 2009, 80, . | 2.9 | 163 | | 72 | Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions. , 2009, , . | | 4 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Recent progress and new challenges in isospin physics with heavy-ion reactions. Physics Reports, 2008, 464, 113-281. | 25.6 | 1,127 | | 74 | Charmed exotics in heavy ion collisions. European Physical Journal C, 2008, 54, 259-265. | 3.9 | 50 | | 75 | Recent Progress in Isospin Physics with Heavy-Ion Reactions. , 2008, , . | | 0 | | 76 | Nucleon and \hat{l} " resonances in K \hat{l} £(1385)photoproduction from nucleons. Physical Review C, 2008, 77, . | 2.9 | 65 | | 77 | Elliptic flow of deuterons in relativistic heavy-ion collisions. Physical Review C, 2007, 76, . | 2.9 | 22 | | 78 | Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Physical Review C, 2007, 76, . | 2.9 | 122 | | 79 | Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei. Frontiers of Physics in China, 2007, 2, 327-357. | 1.0 | 32 | | 80 | Progress towards Determining the Density Dependence of the Nuclear Symmetry Energy Using Heavy-Ion Reactions. Acta Physica Hungarica A Heavy Ion Physics, 2006, 25, 219-228. | 0.4 | 0 | | 81 | Transport Model Study of HBT at RHIC. AIP Conference Proceedings, 2006, , . | 0.4 | 1 | | 82 | Anisotropic flow inCu+Aucollisions atsNN=200GeV. Physical Review C, 2006, 73, . | 2.9 | 15 | | 83 | $\ddot{\text{I}}\bullet$ and $\hat{\text{I}}\otimes$ production in relativistic heavy-ion collisions in a dynamical quark coalescence model. Physical Review C, 2006, 73, . | 2.9 | 83 | | 84 | Nuclear symmetry potential in the relativistic impulse approximation. Physical Review C, 2006, 74, . | 2.9 | 24 | | 85 | High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter. Physical Review C, 2005, 72, . | 2.9 | 31 | | 86 | Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei. Physical Review C, 2005, 72, . | 2.9 | 262 | | 87 | Multiphase transport model for relativistic heavy ion collisions. Physical Review C, 2005, 72, . | 2.9 | 1,020 | | 88 | Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions. Physical Review C, 2004, 69, . | 2.9 | 71 | | 89 | Charmonium mass in nuclear matter. Physical Review C, 2003, 67, . | 2.9 | 69 | | 90 | Strangeness equilibration in heavy ion collisions. AIP Conference Proceedings, 2001, , . | 0.4 | 0 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 91 | PROPERTIES OF HADRONS IN THE NUCLEAR MEDIUM. Annual Review of Nuclear and Particle Science, 1997, 47, 505-539. | 10.2 | 71 | | 92 | Formation of superdense hadronic matter in high energy heavy-ion collisions. Physical Review C, 1995, 52, 2037-2063. | 2.9 | 403 | | 93 | Charmonium production in relativistic heavy-ion collisions. , 0, . | | 1 |