
Mousumi Deb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3303304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitin and chitosan-based blends and composites. , 2022, , 123-203.		2
2	Light-Emitting Redox Polymers for Sensing and Removal-Reduction of Cu(II): Roles of Hydrogen Bonding in Nonconventional Fluorescence. ACS Applied Polymer Materials, 2022, 4, 1643-1656.	2.0	11
3	Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensingâ€Removalâ€Reduction of Cu(II): Strategic Optimization of Composition. Macromolecular Rapid Communications, 2022, 43, .	2.0	7
4	Nonconjugated Biocompatible Macromolecular Luminogens for Sensing and Removals of Fe(III) and Cu(II): DFT Studies on Selective Coordination(s) and Onâ€Off Sensing. Macromolecular Rapid Communications, 2021, 42, e2000522.	2.0	13
5	Fluorescent Terpolymers Using Two Non-Emissive Monomers for Cr(III) Sensors, Removal, and Bio-Imaging. ACS Biomaterials Science and Engineering, 2020, 6, 1397-1407.	2.6	26
6	Synthesis of Biocompatible Aliphatic Terpolymers via In Situ Fluorescent Monomers for Three-in-One Applications: Polymerization of Hydrophobic Monomers in Water. Langmuir, 2020, 36, 6178-6187.	1.6	28
7	Light-Emitting Multifunctional Maleic Acid- <i>co</i> -2-(<i>N</i> (hydroxymethyl)acrylamido)succinic Acid- <i>co</i> - <i>N</i> (hydroxymethyl)acrylamide for Fe(III) Sensing, Removal, and Cell Imaging. ACS Omega, 2020, 5, 3333-3345.	1.6	20
8	Fluorescent Guar Gum- <i>g</i> -Terpolymer via In Situ Acrylamido-Acid Fluorophore-Monomer in Cell Imaging, Pb(II) Sensor, and Security Ink. ACS Applied Bio Materials, 2020, 3, 1995-2006.	2.3	30
9	Review on additives-based structure-property alterations in dyeing of collagenic matrices. Journal of Molecular Liquids, 2019, 293, 111470.	2.3	21
10	In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes. ACS Omega, 2019, 4, 1763-1780.	1.6	27
11	Structures, Properties, and Performances—Relationships of Polymeric Membranes for Pervaporative Desalination. Membranes, 2019, 9, 58.	1.4	16
12	Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb(II), Hg(II), dyes, vitamin-C, and p-nitrophenol. Journal of Hazardous Materials, 2019, 369, 746-762.	6.5	71
13	An <i>in situ</i> approach for the synthesis of a gum ghatti- <i>g</i> -interpenetrating terpolymer network hydrogel for the high-performance adsorption mechanism evaluation of Cd(<scp>ii</scp>), Pb(<scp>ii</scp>), Bi(<scp>iii</scp>) and Sb(<scp>iii</scp>). Journal of Materials Chemistry A, 2018, 6, 8078-8100.	5.2	68
14	In Situ Allocation of a Monomer in Pectin- <i>g</i> -Terpolymer Hydrogels and Effect of Comonomer Compositions on Superadsorption of Metal Ions/Dyes. ACS Omega, 2018, 3, 4163-4180.	1.6	43
15	Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions. ACS Omega, 2018, 3, 10692-10708.	1.6	32