Edoardo Persichetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3303157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the hardness of the Lee syndrome decoding problem. Advances in Mathematics of Communications, 2024, 18, 233-266.	0.7	8
2	Designing a Practical Code-Based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography, 2022, 6, 5.	2.3	14
3	Advanced signature functionalities from the code equivalence problem. International Journal of Computer Mathematics: Computer Systems Theory, 2022, 7, 112-128.	1.1	8
4	Reproducible families of codes and cryptographic applications. Journal of Mathematical Cryptology, 2021, 16, 20-48.	0.7	4
5	LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem. Lecture Notes in Computer Science, 2021, , 23-43.	1.3	24
6	On the applicability of the Fujisaki–Okamoto transformation to the BIKE KEM. International Journal of Computer Mathematics: Computer Systems Theory, 2021, 6, 364-374.	1.1	4
7	Cryptanalysis of a code-based full-time signature. Designs, Codes, and Cryptography, 2021, 89, 2097-2112.	1.6	2
8	Cryptanalysis of a Code-Based Signature Scheme Based on the Schnorr-Lyubashevsky Framework. IEEE Communications Letters, 2021, 25, 2829-2833.	4.1	1
9	LESS is More: Code-Based Signatures Without Syndromes. Lecture Notes in Computer Science, 2020, , 45-65.	1.3	25
10	Designing Efficient Dyadic Operations for Cryptographic Applications. Journal of Mathematical Cryptology, 2020, 14, 95-109.	0.7	3
11	DAGS: Reloaded Revisiting Dyadic Key Encapsulation. Lecture Notes in Computer Science, 2019, , 69-85.	1.3	3
12	From Key Encapsulation to Authenticated Group Key Establishment—A Compiler for Post-Quantum Primitives â€. Entropy, 2019, 21, 1183.	2.2	6
13	A Reaction Attack Against Cryptosystems Based on LRPC Codes. Lecture Notes in Computer Science, 2019, , 197-216.	1.3	11
14	Tighter Proofs of CCA Security in the Quantum Random Oracle Model. Lecture Notes in Computer Science, 2019, , 61-90.	1.3	40
15	Efficient One-Time Signatures from Quasi-Cyclic Codes: A Full Treatment. Cryptography, 2018, 2, 30.	2.3	17
16	On the Performance and Security of Multiplication in GF(2N). Cryptography, 2018, 2, 25.	2.3	5
17	DAGS: Key encapsulation using dyadic GS codes. Journal of Mathematical Cryptology, 2018, 12, 221-239.	0.7	18
18	On the CCA2 Security of McEliece in the Standard Model. Lecture Notes in Computer Science, 2018, , 165-181.	1.3	4

EDOARDO PERSICHETTI

#	Article	IF	CITATIONS
19	Efficient Implementation of Hybrid Encryption from Coding Theory. Lecture Notes in Computer Science, 2017, , 254-264.	1.3	3
20	CAKE: Code-Based Algorithm for Key Encapsulation. Lecture Notes in Computer Science, 2017, , 207-226.	1.3	13
21	On lower bounds for information set decoding over 𝔽 _{q and on the effect of partial knowledge. International Journal of Information and Coding Theory, 2017, 4, 47.}	0.3	8
22	On lower bounds for information set decoding over 𝔽 _{q and on the effect of partial knowledge. International Journal of Information and Coding Theory, 2017, 4, 47.}	0.3	0
23	Leakage-Resilient Cryptography over Large Finite Fields: Theory and Practice. Lecture Notes in Computer Science, 2015, , 655-674.	1.3	2
24	Secure and Anonymous Hybrid Encryption from Coding Theory. Lecture Notes in Computer Science, 2013, , 174-187.	1.3	17
25	Efficient Implementation of a CCA2-Secure Variant of McEliece Using Generalized Srivastava Codes. Lecture Notes in Computer Science, 2012, , 138-155.	1.3	18
26	Compact McEliece keys based on quasi-dyadic Srivastava codes. Journal of Mathematical Cryptology, 2012, 6, .	0.7	30