

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3302959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Monoterpene Acid and Gallic Acid Glucose Esters with Anti-Inflammatory Activity from Blue Gum (<i>Eucalyptus globulus</i>) Leaves. Journal of Agricultural and Food Chemistry, 2022, , .	5.2	1
2	The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota. International Journal of Biological Macromolecules, 2022, 213, 234-246.	7.5	22
3	Discovery, preparation and characterization of lipid-lowering alkylphenol derivatives from Syzygium jambos fruit. Food Chemistry, 2022, 396, 133668.	8.2	2
4	Chemical Characterization and Hepatoprotective Effects of a Standardized Triterpenoid-Enriched Guava Leaf Extract. Journal of Agricultural and Food Chemistry, 2021, 69, 3626-3637.	5.2	14
5	Discovery of Anti-TNBC Agents Targeting PTP1B: Total Synthesis, Structure–Activity Relationship, <i>In Vitro</i> and <i>In Vivo</i> Investigations of Jamunones. Journal of Medicinal Chemistry, 2021, 64, 6008-6020.	6.4	14
6	Chemical characterization, antiproliferative and antifungal activities of Clinacanthus nutans. Fìtoterapìâ, 2021, 155, 105061.	2.2	2
7	Oxazolomycins produced by Streptomyces glaucus and their cytotoxic activity. RSC Advances, 2021, 11, 35011-35019.	3.6	0
8	Hypoglycemic effects of Fu-Pen-Zi (Rubus chingii Hu) fruit extracts in streptozotocin-induced type 1 diabetic mice. Journal of Functional Foods, 2021, 87, 104837.	3.4	5
9	Barringtogenol C-type Triterpenoid Saponins from the Stem Bark of Norway Maple (Acer Platanoides). Planta Medica, 2020, 86, 70-77.	1.3	8
10	New antimicrobial terpenoids and phloroglucinol glucosides from Syzygium szemaoense. Bioorganic Chemistry, 2020, 103, 104242.	4.1	17
11	New anti-inflammatory withanolides from Physalis pubescens fruit. Fìtoterapìâ, 2020, 146, 104692.	2.2	7
12	Comparative analysis of fecal metabolite profiles in HFD-induced obese mice after oral administration of huangjinya green tea extract. Food and Chemical Toxicology, 2020, 145, 111744.	3.6	11
13	Guavinoside B from <i>Psidium guajava</i> alleviates acetaminophen-induced liver injury <i>via</i> regulating the Nrf2 and JNK signaling pathways. Food and Function, 2020, 11, 8297-8308.	4.6	24
14	Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice. Journal of Functional Foods, 2020, 70, 103970.	3.4	15
15	Brassinosteroid analogues from the fruiting bodies of Laetiporus sulphureus and their anti-inflammatory activity. Steroids, 2019, 151, 108468.	1.8	12
16	New Acylated Phenolic Glycosides with ROS-Scavenging Activity from <i>Psidium guajava</i> Leaves. Journal of Agricultural and Food Chemistry, 2019, 67, 11089-11098.	5.2	18
17	Jamun (<i>Eugenia jambolana</i> Lam.) Fruit Extract Prevents Obesity by Modulating the Gut Microbiome in Highâ€Fatâ€Đietâ€Fed Mice. Molecular Nutrition and Food Research, 2019, 63, e1801307.	3.3	46
18	Piptolinic acids F–J, five new lanostane-type triterpenoids from Piptoporus betulinus. Natural Product Research, 2019, 33, 3044-3051.	1.8	10

Liya Li

#	Article	IF	CITATIONS
19	Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. Journal of Agricultural and Food Chemistry, 2018, 66, 571-580.	5.2	96

Hypoglycemic and hypolipidemic effects of triterpenoid-enriched Jamun (<i>Eugenia jambolana</i>) Tj ETQq0 0 0 rg $_{4.6}^{BT}$ /Overlock 10 Tf 5

21	Phenolics from <i>Eugenia jambolana</i> seeds with advanced glycation endproduct formation and alpha-glucosidase inhibitory activities. Food and Function, 2018, 9, 4246-4254.	4.6	22
22	Phloroglucinol Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activities from Eugenia jambolana Seeds. Journal of Natural Products, 2017, 80, 544-550.	3.0	29
23	New Sesquiterpenoids from <i>Eugenia jambolana</i> Seeds and Their Anti-microbial Activities. Journal of Agricultural and Food Chemistry, 2017, 65, 10214-10222.	5.2	22
24	Chemical composition and anti-hyperglycaemic effects of triterpenoid enriched Eugenia jambolana Lam. berry extract. Journal of Functional Foods, 2017, 28, 1-10.	3.4	27
25	Structure determination of two new nerolidolâ€ŧype sesquiterpenoids from the soil actinomycete <i>Streptomyces scopuliridis</i> . Magnetic Resonance in Chemistry, 2016, 54, 606-609.	1.9	8
26	Officimalonic acids Aâ^'H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry, 2016, 130, 193-200.	2.9	38
27	Bafilomycins and Odoriferous Sesquiterpenoids from <i>Streptomyces albolongus</i> Isolated from <i>Elephas maximus</i> Feces. Journal of Natural Products, 2016, 79, 799-805.	3.0	43
28	Structures and biological activities of the triterpenoids and sesquiterpenoids from Alisma orientale. Phytochemistry, 2016, 131, 150-157.	2.9	35
29	A unique macrolactam derivative via a [4+6]-cycloaddition from Streptomyces niveus. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1599-1604.	2.2	10
30	Chemical characterization and anti-hyperglycaemic effects of polyphenol enriched longan (Dimocarpus longan Lour.) pericarp extracts. Journal of Functional Foods, 2015, 13, 314-322.	3.4	41
31	Diastaphenazine, a new dimeric phenazine from an endophytic Streptomyces diastaticus subsp. ardesiacus. Journal of Antibiotics, 2015, 68, 210-212.	2.0	27
32	Jiangrines A–F and Jiangolide from an Actinobacterium, <i>Jiangella gansuensis</i> . Journal of Natural Products, 2014, 77, 2605-2610.	3.0	17
33	Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. Journal of Functional Foods, 2014, 6, 126-136.	3.4	55
34	α-Glucosidase Inhibitory Hydrolyzable Tannins from <i>Eugenia jambolana</i> Seeds. Journal of Natural Products, 2012, 75, 1505-1509.	3.0	73
35	Chemical Composition and Biological Effects of Maple Syrup. ACS Symposium Series, 2012, , 323-333.	0.5	3
36	Further Investigation into Maple Syrup Yields 3 New Lignans, a New Phenylpropanoid, and 26 Other Phytochemicals. Journal of Agricultural and Food Chemistry, 2011, 59, 7708-7716.	5.2	102

Liya Li

#	Article	IF	CITATIONS
37	Maple Syrup Phytochemicals Include Lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 11673-11679.	5.2	152
38	Structure of Anthocyanins from Eugenia Jambolana Fruit. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	11
39	Identification and Bioactivities of Resveratrol Oligomers and Flavonoids from Carex folliculata Seeds. Journal of Agricultural and Food Chemistry, 2009, 57, 7282-7287.	5.2	100
40	Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but Not Non-Tumorigenic Breast Cells. Journal of Agricultural and Food Chemistry, 2009, 57, 826-831.	5.2	119
41	Structure of anthocyanins from Eugenia jambolana fruit. Natural Product Communications, 2009, 4, 217-9.	0.5	10