Xiangwei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3302870/publications.pdf

Version: 2024-02-01

840776 1199594 12 461 11 12 citations h-index g-index papers 14 14 14 568 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Predicting Hormetic Effects of Ionic Liquid Mixtures on Luciferase Activity Using the Concentration Addition Model. Environmental Science & Environmen	10.0	77
2	Comparison between the short-term and the long-term toxicity of six triazine herbicides on photobacteria Q67. Water Research, 2009, 43, 1731-1739.	11.3	71
3	Modeling non-monotonic dose–response relationships: Model evaluation and hormetic quantities exploration. Ecotoxicology and Environmental Safety, 2013, 89, 130-136.	6.0	57
4	All-Assay-Max2 pQSAR: Activity Predictions as Accurate as Four-Concentration IC ₅₀ s for 8558 Novartis Assays. Journal of Chemical Information and Modeling, 2019, 59, 4450-4459.	5.4	51
5	The Use of Pseudo-Equilibrium Constant Affords Improved QSAR Models of Human Plasma Protein Binding. Pharmaceutical Research, 2013, 30, 1790-1798.	3.5	43
6	Hybrid <i>in silico</i> models for drugâ€induced liver injury using chemical descriptors and <i>in vitro</i> cellâ€imaging information. Journal of Applied Toxicology, 2014, 34, 281-288.	2.8	41
7	Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO. Journal of Chemical Information and Modeling, 2015, 55, 736-746.	5.4	30
8	Preparation and photocatalytic properties of graphene/TiO2 nanotube arrays photoelectrodes. Journal of Alloys and Compounds, 2015, 618, 761-767.	5.5	28
9	In Silico Prediction of Drug-Induced Liver Injury Based on Adverse Drug Reaction Reports. Toxicological Sciences, 2017, 158, 391-400.	3.1	24
10	Structure-dependent activities of polybrominated diphenyl ethers and hydroxylated metabolites on zebrafish retinoic acid receptor. Environmental Science and Pollution Research, 2015, 22, 1723-1730.	5.3	15
11	Chemical and <i>in vitro</i> biological information to predict mouse liver toxicity using recursive random forests. SAR and QSAR in Environmental Research, 2016, 27, 559-572.	2.2	14
12	Two-Stage Prediction of the Effects of Imidazolium and Pyridinium Ionic Liquid Mixtures on Luciferase. Molecules, 2014, 19, 6877-6890.	3.8	10