Kapil Tomar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330231/publications.pdf Version: 2024-02-01

KADIL TOMAD

#	Article	IF	CITATIONS
1	Cost-Effective Realization of Multimode Exciton–Polaritons in Single-Crystalline Microplates of a Layered Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 7288-7295.	8.0	12
2	Weak and Reversible Binding of Alkali Metal Ions (Na+/K+) by an Azaâ€Oxa Cryptand. ChemistrySelect, 2019, 4, 1785-1788.	1.5	1
3	Room temperature synthesis of an Fe(<scp>ii</scp>)-based porous MOF with multiple open metal sites for high gas adsorption properties. New Journal of Chemistry, 2019, 43, 4338-4341.	2.8	2
4	Halocarbon Encapsulation via Halogen··ķπ Interactions in a Bispyrazole-Based Cryptand. Crystal Growth and Design, 2019, 19, 369-375.	3.0	4
5	Nanosized Bispyrazole-Based Cryptand-Stabilized Palladium(0) Nanoparticles: A Reusable Heterogeneous Catalyst for the Suzuki–Miyaura Coupling Reaction in Water. Inorganic Chemistry, 2019, 58, 1003-1006.	4.0	26
6	Structural Diversity and Selective CO ₂ Adsorption of Metal– Organic Frameworks Built with a Flexible Dipyridyl Ligand and Different Carboxylates. ChemistrySelect, 2018, 3, 785-793.	1.5	7
7	Exploiting Dimensional Variability in Cu Paddle-Wheel Secondary Building Unit Based Mixed Valence Cu(II)/Cu(I) Frameworks from a Bispyrazole Ligand by Solvent/pH Variation. Crystal Growth and Design, 2018, 18, 2397-2404.	3.0	13
8	From Zn(II) to Cu(II) framework via single-crystal to single-crystal metathesis with superior gas uptake and heterogeneous catalytic properties. Inorganica Chimica Acta, 2018, 482, 925-934.	2.4	8
9	Construction of Supramolecular Assemblies from Substituted Pyrazoles and Pyromellitic Acid: Rational Analysis of the Synthons and Theoretical Studies. Journal of Chemical Crystallography, 2017, 47, 69-79.	1.1	2
10	A porous two-dimensional Zn(<scp>ii</scp>)-coordination polymer exhibiting SC–SC transmetalation with Cu(<scp>ii</scp>): efficient heterogeneous catalysis for the Henry reaction and detection of nitro explosives. Dalton Transactions, 2017, 46, 7619-7627.	3.3	31
11	Cd(<scp>ii</scp>) coordination polymers constructed with a flexible carboxylate linker and pyridyl co-linkers: variation in the network topologies and photoluminescence properties. CrystEngComm, 2017, 19, 2253-2263.	2.6	30
12	Structural diversity of Zn(<scp>ii</scp>) based coordination polymers constructed from a flexible carboxylate linker and pyridyl co-linkers: fluorescence sensing of nitroaromatics. New Journal of Chemistry, 2017, 41, 14505-14515.	2.8	21
13	An Amine Functionalized Metal–Organic Framework as an Effective Catalyst for Conversion of CO ₂ and Biginelli Reactions. Inorganic Chemistry, 2017, 56, 9765-9771.	4.0	56
14	From Zn(II)-Carboxylate to Double-Walled Zn(II)-Carboxylato Phosphate MOF: Change in the Framework Topology, Capture and Conversion of CO ₂ , and Catalysis of Strecker Reaction. Inorganic Chemistry, 2017, 56, 14605-14611.	4.0	48
15	Chiral Cadmium(II) Metal–Organic Framework from an Achiral Ligand by Spontaneous Resolution: An Efficient Heterogeneous Catalyst for the Strecker Reaction of Ketones. Inorganic Chemistry, 2017, 56, 13629-13633.	4.0	36
16	Tuning the Magnetoluminescence Behavior of Lanthanide Complexes Having Sphenocorona and Cubic Coordination Geometries. European Journal of Inorganic Chemistry, 2016, 2016, 2774-2782.	2.0	19
17	Fieldâ€Induced Singleâ€Ionâ€Magnetic Behavior of Octahedral Co ^{II} in a Twoâ€Dimensional Coordination Polymer. European Journal of Inorganic Chemistry, 2016, 2016, 3545-3552.	2.0	44
18	Change in synthetic strategy for MOF fabrication: from 2D non-porous to 3D porous architecture and its sorption and emission property studies. New Journal of Chemistry, 2016, 40, 1953-1956.	2.8	9

KAPIL TOMAR

#	Article	IF	CITATIONS
19	Interconversion of host–guest components in supramolecular assemblies of polycarboxylic acids and reduced Schiff bases. Structural Chemistry, 2016, 27, 1027-1040.	2.0	4
20	A novel 2D porous Cd(II) MOF with a (4,4) connected binodal network: Synthesis and photoluminescence sensing of small molecules. Inorganic Chemistry Communication, 2016, 64, 16-18.	3.9	18
21	Assembly of an imidazole templated indium-oxalate porous 3D framework with tcj/hc topology: Synthesis, structure and sorption property. Inorganic Chemistry Communication, 2015, 54, 63-65.	3.9	2
22	Synthesis, crystal structure and hydrolytic activity of a trispyrazolyl borato cadmium hydroxo complex. Inorganic Chemistry Communication, 2015, 54, 31-33.	3.9	2
23	Supramolecular assemblies of benzene-1,3,5-tricarboxylic acid and 3,5-substituted pyrazoles: formation and structural analysis. CrystEngComm, 2015, 17, 1421-1433.	2.6	12
24	Stable Multiresponsive Luminescent MOF for Colorimetric Detection of Small Molecules in Selective and Reversible Manner. Chemistry of Materials, 2015, 27, 5349-5360.	6.7	227
25	Synthesis and Characterization of Polyhedral-Based Metal–Organic Frameworks Using a Flexible Bipyrazole Ligand: Topological Analysis and Sorption Property Studies. Crystal Growth and Design, 2015, 15, 2732-2741.	3.0	41
26	Exploration of Structural Topologies in Metal–Organic Frameworks Based on 3-(4-Carboxyphenyl)propionic Acid, Their Synthesis, Sorption, and Luminescent Property Studies. Crystal Growth and Design, 2014, 14, 2022-2033.	3.0	46
27	Assembly of an eight connected porous Cd(II) framework with octahedral and cubo-octahedral cages: Sorption and luminescent properties. Inorganic Chemistry Communication, 2013, 37, 127-131.	3.9	4
28	Assembly of a pcu topological porous Cd-trimesate framework with free carboxylic acid group: Sorption and luminescent property. Inorganic Chemistry Communication, 2013, 37, 132-137.	3.9	11