Masamichi Ogasawara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3302176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Monophosphaferrocenes Revisited. ChemistrySelect, 2022, 7, .	0.7	6
2	Application of Polysaccharide-Based Chiral High-Performance Liquid Chromatography Columns for the Separation of Regio-, E/Z-, and Enantio–Isomeric Mixtures of Allylic Compounds. ACS Omega, 2022, 7, 5146-5153.	1.6	4
3	Estimating Effective Steric and Electronic Impacts of a Ferrocenyl Group in Organophosphines. ACS Omega, 2021, 6, 5981-5989.	1.6	9
4	Enantioselective Preparation of Planarâ€Chiral Transition Metal Complexes by Asymmetric Olefinâ€Metathesis Reactions in Metal Coordination Spheres. Chemical Record, 2021, 21, 3509-3519.	2.9	8
5	C1-Symmetric Binap Derivative Featuring Single Diferrocenylphosphino-Donor Moiety. Organometallics, 2021, 40, 1020-1024.	1.1	1
6	Stereodivergent Access to Trisubstituted Alkenylboronate Esters through Alkene Isomerization. Organic Letters, 2021, 23, 9194-9198.	2.4	11
7	Versatile and Enantioselective Preparation of Planar-Chiral Metallocene-Fused 4-Dialkylaminopyridines and Their Application in Asymmetric Organocatalysis. ACS Catalysis, 2020, 10, 292-301.	5.5	18
8	Synthesis, Characterization, and Application of Segphos Derivative Having Diferrocenylphosphino-Donor Moieties. Organometallics, 2020, 39, 788-792.	1.1	4
9	Oxidative Cyclization of <i>o</i> -(1-Hydroxy-2-alkynyl)- <i>N</i> -tosylanilides for the Synthesis of 4-Quinolones. Journal of Organic Chemistry, 2020, 85, 6420-6428.	1.7	2
10	Theoretical investigations of Rhâ€catalyzed asymmetric 1,4â€addition to enones using planarâ€chiral phosphineâ€olefin ligands. Journal of Computational Chemistry, 2019, 40, 113-118.	1.5	4
11	Palladium-Catalyzed Sequential Twofold Nucleophilic Substitution on 3-Bromopenta-2,4-dienyl Phosphate: Preparation of C1- and C2-Symmetric Doubly Functionalized Allenes. Journal of Organic Chemistry, 2019, 84, 12463-12470.	1.7	1
12	Palladium-Catalyzed Three-Component Coupling of 1,1-Dibromoalkenes, Vinylzinc Chloride, and Soft Nucleophiles: One-Pot Synthesis of 1,3-Disubstituted Allenes. ACS Omega, 2019, 4, 19499-19504.	1.6	0
13	Application of Polysaccharide-Based Chiral HPLC Columns for Separation of Nonenantiomeric Isomeric Mixtures of Organometallic Compounds. Organometallics, 2019, 38, 512-518.	1.1	14
14	Catalytic Enantioselective Aldol Reactions of Unprotected Carboxylic Acids under Phosphine Oxide Catalysis. Angewandte Chemie, 2018, 130, 16103-16107.	1.6	5
15	Catalytic Enantioselective Aldol Reactions of Unprotected Carboxylic Acids under Phosphine Oxide Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15877-15881.	7.2	33
16	Isolation and phototransformation of enantiomerically pure iridium(iii) bis[(4,6-difluorophenyl)pyridinato-N,C2]picolinate. RSC Advances, 2017, 7, 29550-29553.	1.7	1
17	Palladium-Catalyzed S _N 2′-Cyclization of Ambivalent (Bromoalkadienyl)malonates: Preparation of Medium- to Large-Membered Endocyclic Allenes. Journal of Organic Chemistry, 2017, 82, 7503-7511.	1.7	3
18	Kinetic Resolution of Planar-Chiral (η ⁵ -Bromocyclopentadienyl)manganese(I) Complexes by Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis. Organometallics, 2017, 36, 1430-1435.	1.1	16

#	Article	IF	CITATIONS
19	Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold To Achieve High Robustness and High Enantioselectivity. Journal of the American Chemical Society, 2017, 139, 1545-1553.	6.6	27
20	Molybdenum-Catalyzed Enantioselective Synthesis of Planar-Chiral (η ⁵ -Phosphacyclopentadienyl)manganese(I) Complexes and Application in Asymmetric Catalysis. Organometallics, 2017, 36, 4061-4069.	1.1	14
21	Atropisomeric Chiral Diiododienes (Z,Z)-2,3-Di(1-iodoalkylidene)tetralins: Synthesis, Enantiomeric Resolution, and Application in Asymmetric Catalysis. Organic Letters, 2017, 19, 4102-4105.	2.4	34
22	Enantioselective Synthesis of Ferrocene―or Cymantreneâ€Fused Planarâ€Chiral Phospholes. European Journal of Inorganic Chemistry, 2017, 2017, 325-329.	1.0	6
23	Enantioselective Synthesis of Planar-Chiral Transition-Metal Complexes by Homogeneous Olefi n-Metathesis Reactions and Their Application in Asymmetric Catalysis. Bulletin of Japan Society of Coordination Chemistry, 2017, 70, 14-21.	0.1	0
24	Bithiophene with Winding Vine-shaped Molecular Asymmetry. Preparation, Structural Characterization, and Enantioselective Synthesis. Bulletin of the Chemical Society of Japan, 2016, 89, 1480-1486.	2.0	9
25	Concise Asymmetric Construction of <i>C</i> ₂ â€symmetric 1,9â€Diarylnonanoids Using a Hypervalent Silicon Complex: Total Synthesis of (â~)â€Ericanone. Chemistry - an Asian Journal, 2016, 11, 376-379.	1.7	18
26	Kinetic Resolution of Planar-Chiral Ferrocenylphosphine Derivatives by Molybdenum-Catalyzed Asymmetric Ring-Closing Metathesis and Their Application in Asymmetric Catalysis. ACS Catalysis, 2016, 6, 1308-1315.	5.5	21
27	Ringâ€Closing Metathesis of (η ⁵ â€Alkenylcyclopentadienyl)(alkenylphosphine)manganese(I) Dicarbonyl Complexes. Advanced Synthesis and Catalysis, 2015, 357, 2255-2264.	2.1	11
28	Catalytic asymmetric synthesis of planar-chiral transition-metal complexes. Tetrahedron Letters, 2015, 56, 1751-1761.	0.7	76
29	Enantioselective Synthesis of Planar-Chiral Ferrocene-Fused 4-Pyridones and Their Application in Construction of Pyridine-Based Organocatalyst Library. Organic Letters, 2015, 17, 2286-2289.	2.4	22
30	Enantioselective Desymmetrization of 1,2,3-Trisubstituted Metallocenes by Molybdenum-Catalyzed Asymmetric Intraannular Ring-Closing Metathesis. Organometallics, 2015, 34, 1197-1202.	1.1	20
31	Enantioselective Synthesis of Macrocyclic Heterobiaryl Derivatives of Molecular Asymmetry by Molybdenumâ€Catalyzed Asymmetric Ringâ€Closing Metathesis. Angewandte Chemie - International Edition, 2015, 54, 4927-4931.	7.2	22
32	Simultaneous Induction of Axial and Planar Chirality in Arene–Chromium Complexes by Molybdenumâ€Catalyzed Enantioselective Ring losing Metathesis. Chemistry - A European Journal, 2015, 21, 4954-4957.	1.7	57
33	Phosphine Oxide-Catalyzed Enantioselective Intramolecular Aldol Reaction via Regioselective Enolization of Unsymmetrical Diketones with Tetrachlorosilane. Organic Letters, 2014, 16, 4802-4805.	2.4	22
34	Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. Journal of Bioscience and Bioengineering, 2014, 117, 99-106.	1.1	31
35	Phosphine–Olefin Ligands Based on a Planar-Chiral (π-Arene)chromium Scaffold: Design, Synthesis, and Application in Asymmetric Catalysis. Journal of the American Chemical Society, 2014, 136, 9377-9384.	6.6	44
36	Synthesis and Characterization of Benzo[b]phosphaferrocene Derivatives. Organometallics, 2013, 32, 4997-5000.	1.1	29

#	Article	IF	CITATIONS
37	Atropisomeric Chiral Dienes in Asymmetric Catalysis: <i>C</i> ₂ â€Symmetric (<i>Z</i> , <i>Z</i>)â€2,3â€Bis[1â€(diphenylphosphinyl)ethylidene]tetralin as a Highly Active Lewis Base Organocatalyst. Angewandte Chemie - International Edition, 2013, 52, 13798-13802.	7.2	27
38	Inter- versus Intraannular Ring-Closing Metathesis of Polyallylferrocenes: Five-Fold RCM within a Single Molecule. Organometallics, 2013, 32, 6593-6598.	1.1	17
39	Enantioselective Morita–Baylis–Hillman reaction catalyzed by a chiral phosphine oxide. Tetrahedron Letters, 2013, 54, 6430-6433.	0.7	17
40	Kinetic Resolution of Planarâ€Chiral 1,2â€Disubstituted Ferrocenes by Molybdenumâ€Catalyzed Asymmetric Intraannular Ringâ€Closing Metathesis. Chemistry - A European Journal, 2013, 19, 4151-4154.	1.7	42
41	Asymmetric Aldol Reaction on Water Using an Organocatalyst Tethered on a Thermoresponsive Block Copolymer. Chemistry Letters, 2013, 42, 1493-1495.	0.7	15
42	Preparation of <i>C</i> ₂ -Symmetric Allenes by Palladium-Catalyzed Double-Nucleophilic Substitution on 3-Bromopenta-2,4-dienyl Acetate. Journal of Organic Chemistry, 2012, 77, 5406-5410.	1.7	15
43	Kinetic Resolution of Planarâ€Chiral (η ⁶ â€Arene)Chromium Complexes by Molybdenumâ€Catalyzed Asymmetric Ringâ€Closing Metathesis. Angewandte Chemie - International Edition, 2012, 51, 2951-2955.	7.2	50
44	Effects of Silyl Substituents on the Palladiumâ€Catalyzed Asymmetric Synthesis of Axially Chiral (Allenylmethyl)silanes and Their S _E 2′ Chirality Transfer Reactions. European Journal of Organic Chemistry, 2012, 2012, 1656-1663.	1.2	18
45	Catalytic Asymmetric Synthesis of Planar-Chiral Transition-Metal Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 593-605.	0.0	23
46	Preparation of Osmium η ⁵ -Phospholide Complexes and Their Reactions with Acyl Electrophiles: Câ•O Bond Cleavage and Câ^'C Bond Formation within the Metal Coordination Sphere. Organometallics, 2011, 30, 1487-1492.	1.1	8
47	Homoannular Double Friedel–Crafts Acylation of Phosphametallocenes. Organometallics, 2011, 30, 5045-5051.	1.1	7
48	Ring-closing metathesis within chromium-coordination sphere: Facile access to phosphine-chelate (Ï€-arene)chromium complexes. Journal of Organometallic Chemistry, 2011, 696, 3987-3991.	0.8	12
49	Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenylsilanes and Their Application to S _E 2′ Chirality Transfer Reactions. Organic Letters, 2010, 12, 5736-5739.	2.4	36
50	Enantioselective Synthesis of Planar-Chiral Phosphaferrocenes by Molybdenum-Catalyzed Asymmetric Interannular Ring-Closing Metathesis. Journal of the American Chemical Society, 2010, 132, 2136-2137.	6.6	88
51	Transition-Metal-Catalyzed Enantioselective Synthesis of Compounds with Non-Centrochirality. Synthesis, 2009, 2009, 1761-1785.	1.2	61
52	Transition-Metal-Catalyzed Enantioselective Synthesis of Compounds with Non-Centrochirality. Synthesis, 2009, 2009, 3177-3178.	1.2	6
53	Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron: Asymmetry, 2009, 20, 259-271.	1.8	274
54	Palladium-Catalyzed Synthesis of Endocyclic Allenes and Their Application in Stereoselective [2 + 2]Cycloaddition with Ketenes. Organic Letters, 2009, 11, 177-180.	2.4	52

MASAMICHI OGASAWARA

#	Article	IF	CITATIONS
55	Unusual Transposition of Allenic Framework in Intramolecular Cyclization of Acetal-Tethered (Allenylmethyl)silanes. Organic Letters, 2009, 11, 4240-4243.	2.4	14
56	Synthesis of fluorinated allenes via palladium-catalyzed monofluoromethylation using FBSM. Chemical Communications, 2009, , 7366.	2.2	32
57	Preparation of [4]- and [5]Ferrocenophanes by Ruthenium-Catalyzed Ring-Closing Eneâ^'Yne Metathesis. Organometallics, 2008, 27, 6565-6569.	1.1	22
58	Asymmetric synthesis of planar-chiral ferrocenes by Mo- or Ru-catalyzed enantioselective metathesis. Pure and Applied Chemistry, 2008, 80, 1109-1113.	0.9	42
59	Palladium-Catalyzed Stereoselective Synthesis of Multisubstituted Allenes and Their Application in Organic Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 100-109.	0.0	5
60	Synthesis, Structure, and Reactivity of (1,2,3-η ³ -Butadien-3-yl)palladium Complexes. Organometallics, 2007, 26, 5025-5029.	1.1	42
61	Unprecedented Formation of μ-Vinylidene Complexes from Phospharuthenocene and Acyl Chloride via Activation of the Câ•O Double Bond. Organometallics, 2007, 26, 6698-6700.	1.1	8
62	Alkenylzirconocene-Mediated Preparation of Alkenylphosphines. Journal of Organic Chemistry, 2007, 72, 8737-8740.	1.7	22
63	Preparation and characterization of 1,1′-diphosphaferrocenes with linearly fused six-membered carbocycles. Journal of Organometallic Chemistry, 2007, 692, 55-59.	0.8	7
64	Kinetic Resolution of Planar-Chiral Ferrocenes by Molybdenum-Catalyzed Enantioselective Metathesis. Organometallics, 2006, 25, 5201-5203.	1.1	75
65	Palladium-Catalyzed Preparation of Vinylallenes from 2-Bromo-1,3,5-trienes via an Alkylidene-ï€-allylpalladium-Mediated Formal SN2â€~〉â€~ Pathway. Organic Letters, 2006, 8, 5409-5412.	2.4	26
66	Synthesis of 2,5-Bis(binaphthyl)phospholes and Phosphametallocene Derivatives and Their Application in Palladium-Catalyzed Asymmetric Hydrosilylation. Organometallics, 2006, 25, 2715-2718.	1.1	74
67	Palladium-Catalyzed Intermolecular Asymmetric Hydroamination with 4,4′-Disubstituted BINAP and SEGPHOS. Advanced Synthesis and Catalysis, 2006, 348, 2051-2056.	2.1	86
68	Controlling the Regiochemistry of Zirconocene-Catalyzed Hydrosilation of Styrenes. Selective Preparation of Markovnikov and anti-Markovnikov Addition Products Using the Same Combination of Procatalysts ChemInform, 2005, 36, no.	0.1	0
69	Preparation of Multisubstituted Allenes from Allylsilanes ChemInform, 2005, 36, no.	0.1	0
70	Applications of 4,4′-(Me3Si)2-BINAP in Transition-Metal-Catalyzed Asymmetric Carbon—Carbon Bond-Forming Reactions ChemInform, 2005, 36, no.	0.1	0
71	Vinyl Ketones to Allenes:  Preparation of 1,3-Dien-2-yl Triflates and Their Application in Pd-Catalyzed Reactions with Soft Nucleophiles. Organic Letters, 2005, 7, 5697-5700.	2.4	32
72	A New Route to Methyl (R,E)-(â^')-Tetradeca-2,4,5-trienoate (Pheromone ofAcanthoscelidesobtectus) Utilizing a Palladium-Catalyzed Asymmetric Allene Formation Reaction. Journal of Organic Chemistry, 2005, 70, 5764-5767.	1.7	62

#	Article	IF	CITATIONS
73	Preparation of Multisubstituted Allenes from Allylsilanes. Journal of Organic Chemistry, 2005, 70, 3871-3876.	1.7	28
74	Applications of 4,4â€~-(Me3Si)2-BINAP in Transition-Metal-Catalyzed Asymmetric Carbonâ^'Carbon Bond-Forming Reactions. Organic Letters, 2005, 7, 2881-2884.	2.4	62
75	Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Cross-Coupling Reactions. , 2005, , 651-674.		6
76	Titanocene-Catalyzed Regioselective syn-Hydrosilation of Alkynes ChemInform, 2004, 35, no.	0.1	0
77	Coordination behavior of phosphino-phosphaferrocenes: monodentate versus bidentate coordination to divalent palladium. Inorganica Chimica Acta, 2004, 357, 3943-3949.	1.2	4
78	Controlling the Regiochemistry of Zirconocene-Catalyzed Hydrosilation of Styrenes. Selective Preparation of Markovnikov and Anti-Markovnikov Addition Products Using the Same Combination of Procatalysts. Organometallics, 2004, 23, 4804-4806.	1.1	24
79	A New Type of Catalytic Tandem 1,4-Addition—Aldol Reaction which Proceeds Through an (Oxa-Ï€-allyl)rhodium Intermediate ChemInform, 2003, 34, no.	0.1	Ο
80	Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral (Allenylmethyl)silanes and Chirality Transfer to Stereogenic Carbon Centers in SE′ Reactions ChemInform, 2003, 34, no.	0.1	0
81	Generation of Chiral Boron Enolates by Rhodium-Catalyzed Asymmetric 1,4-Addition of 9-Aryl-9-borabicyclo[3.3.1]nonanes (B-Ar-9BBN) to α,β-Unsaturated Ketones ChemInform, 2003, 34, no.	0.1	Ο
82	Generation of Chiral Boron Enolates by Rhodium-Catalyzed Asymmetric 1,4-Addition of 9-Aryl-9-borabicyclo[3.3.1]nonanes (B-Ar-9BBN) to α,β-Unsaturated Ketones. Journal of Organic Chemistry, 2003, 68, 1901-1905.	1.7	67
83	Titanocene-Catalyzed Regioselective syn-Hydrosilation of Alkynes. Organic Letters, 2003, 5, 3479-3481.	2.4	62
84	Induction of Atropisomeric Chirality on Heavily Substituted Phosphametallocenes. Organometallics, 2003, 22, 1783-1786.	1.1	22
85	Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral (Allenylmethyl)silanes and Chirality Transfer to Stereogenic Carbon Centers in SE†Reactions. Organic Letters, 2003, 5, 217-219.	2.4	75
86	Synthesis of 1,1â€~-Diphospha[4]ferrocenophanes by Molybdenum-Catalyzed Ring-Closing Metathesis. Organometallics, 2003, 22, 1174-1176.	1.1	39
87	"Widening the Roofâ€ŧ Synthesis and Characterization of New ChiralC1-Symmetric Octahydrofluorenyl Organolanthanide Catalysts and Their Implementation in the Stereoselective Cyclizations of Aminoalkenes and Phosphinoalkenes. Organometallics, 2002, 21, 283-292.	1.1	157
88	Metathesis Route to Bridged Metallocenes. Journal of the American Chemical Society, 2002, 124, 9068-9069.	6.6	78
89	A New Type of Catalytic Tandem 1,4-Additionâ^'Aldol Reaction Which Proceeds through an (Oxa-Ï€-allyl)rhodium Intermediate. Journal of the American Chemical Society, 2002, 124, 10984-10985.	6.6	109
90	Effects of Bidentate Phosphine Ligands onsynâ^'antilsomerization in Ï€-Allylpalladium Complexes. Organometallics, 2002, 21, 4853-4861.	1.1	44

#	Article	IF	CITATIONS
91	Asymmetric Synthesis of Metallocenes through Enantioselective Addition of Organolithium Reagents to 6-(Dimethylamino)fulvene. Journal of Organic Chemistry, 2002, 67, 3355-3359.	1.7	56
92	Synthesis and Characterization of $1,1$ â \in -Diphospharuthenocenes. Organometallics, 2002, 21, 3062-3065.	1.1	21
93	Catalytic Cycle of Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboronic Acids. Arylrhodium, Oxa-ï€-allylrhodium, and Hydroxorhodium Intermediates. Journal of the American Chemical Society, 2002, 124, 5052-5058.	6.6	583
94	Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids:Â 1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate. Journal of the American Chemical Society, 2001, 123, 9918-9919.	6.6	318
95	Chloroprene as a Source of Fine Chemicals:  Palladium-Catalyzed Synthesis of Terminal Allenes. Organic Letters, 2001, 3, 2615-2617.	2.4	39
96	A Novel Chiral Phosphinoâ^'Phosphaferrocene:Â Its Coordination Behavior and Application to Palladium-Catalyzed Asymmetric Allylic Alkylation. Organometallics, 2001, 20, 3913-3917.	1.1	60
97	Synthesis and Characterization of a Novel Chiral Phosphole and Its Derivatives. Organometallics, 2001, 20, 1014-1019.	1.1	49
98	Palladium-Catalyzed Asymmetric Synthesis of Axially Chiral Allenes:  A Synergistic Effect of Dibenzalacetone on High Enantioselectivity. Journal of the American Chemical Society, 2001, 123, 2089-2090.	6.6	133
99	Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboron Reagents to 5,6-Dihydro-2(1H)-pyridinones. Asymmetric Synthesis of 4-Aryl-2-piperidinones. Journal of Organic Chemistry, 2001, 66, 6852-6856.	1.7	174
100	Palladium-Catalyzed Synthesis of Butatrienes. Chemistry Letters, 2000, 29, 776-777.	0.7	14
101	Asymmetric 1,4-addition of phenylboronic acid to 2-cyclohexenone catalyzed by Rh(I)/binap complexes. , 2000, 12, 469-471.		46
102	Ï€-Allylpalladium-Mediated Catalytic Synthesis of Functionalized Allenes. Angewandte Chemie - International Edition, 2000, 39, 1042-1044.	7.2	75
103	Palladium-Catalyzed Asymmetric Reduction of Racemic Allylic Esters with Formic Acid: Effects of Phosphine Ligands on Isomerization of π-Allylpalladium Intermediates and Enantioselectivity. Tetrahedron, 2000, 56, 2247-2257.	1.0	35
104	Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Nitroalkenes. Journal of the American Chemical Society, 2000, 122, 10716-10717.	6.6	201
105	2,2â€~-Bis(diphenylphosphino)-1,1â€~-biphenyl: New Entry of Bidentate Triarylphosphine Ligand to Transition Metal Catalysts. Organometallics, 2000, 19, 1567-1571.	1.1	83
106	Ï€-Allylpalladium-Mediated Catalytic Synthesis of Functionalized Allenes. , 2000, 39, 1042.		6
107	Novel Palladium Chiral Phosphinooxazoline Complexes: Crystal Strucutre Studies and Application to Asymmetric Heck Reaction. Heterocycles, 2000, 52, 195.	0.4	14
108	Rhodium-catalyzed asymmetric 1,4-addition of arylboron compounds generated in situ from aryl bromides. Tetrahedron Letters, 1999, 40, 6957-6961.	0.7	107

MASAMICHI OGASAWARA

#	Article	IF	CITATIONS
109	Rhodium-catalyzed asymmetric 1,4-addition of arylboron reagents to α,β-unsaturated esters. Tetrahedron: Asymmetry, 1999, 10, 4047-4056.	1.8	163
110	Synthetic approaches to Fe(II) complexes of the bulky phosphine PtBu2Me. Inorganica Chimica Acta, 1999, 291, 226-230.	1.2	14
111	Design and Preparation of 3,3'-Disubstituted 2,2'-Bis(oxazolyl)-1,1'-binaphthyls (boxax): New Chiral Bis(oxazoline) Ligands for Catalytic Asymmetric Wacker-Type Cyclization. Journal of Organic Chemistry, 1999, 64, 1620-1625.	1.7	94
112	Rhodium-Catalyzed Asymmetric 1,4-Addition to 1-Alkenylphosphonates. Journal of the American Chemical Society, 1999, 121, 11591-11592.	6.6	191
113	Rhodium-catalyzed asymmetric 1,4-addition of 2-alkenyl-1,3,2-benzodioxaboroles to α,β-unsaturated ketones. Tetrahedron Letters, 1998, 39, 8479-8482.	0.7	126
114	Synthesis and application of novel chiral phosphino-oxazoline ligands with 1,1′-binaphthyl skeleton. Tetrahedron: Asymmetry, 1998, 9, 1779-1787.	1.8	97
115	Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. Journal of the American Chemical Society, 1998, 120, 5579-5580.	6.6	681
116	Competition between Steric and Electronic Control of Structure in Ru(CO)2L2Lâ€~ Complexes. Organometallics, 1997, 16, 1979-1993.	1.1	51
117	RuX(CO)(NO)L2and Ru(CO)(NO)L2+:Â Ru(0) or Ru(II) or In Between?. Journal of the American Chemical Society, 1997, 119, 8642-8651.	6.6	77
118	Is π-donation the only way? Unprecedented unsaturated Ru(II) species devoid of π-donor ligands. Inorganica Chimica Acta, 1997, 259, 5-26.	1.2	42
119	Unexpected Coexistence of Isomeric Forms and Unusual Structures of Ru(CO)2L3‖. Inorganic Chemistry, 1996, 35, 7468-7469.	1.9	16
120	Estimating the Effective Steric Impact of PtBu2Me, PiPr3, and PCy3. Organometallics, 1996, 15, 4900-4903.	1.1	25
121	Characterization and Reactivity of an Unprecedented Unsaturated Zero-Valent Ruthenium Species:Â Isolable, Yet Highly Reactive. Journal of the American Chemical Society, 1996, 118, 10189-10199.	6.6	69
122	Structure and Characterization of 9,10-Diethyl-9,10-diphospha-9,10-dihydroanthracene as an Electron Donor. Bulletin of the Chemical Society of Japan, 1996, 69, 1223-1226.	2.0	13
123	Isolable, Unsaturated Ru(0) in Ru(CO)2(PtBu2Me)2: Not Isostructural with Rh(I) in Rh(CO)2(PR3)2+. Journal of the American Chemical Society, 1995, 117, 8869-8870.	6.6	59
124	Effects of chelate ring rigidity on intramolecular hydrogen exchange in hydrido(dihydrogen)bis(diphosphine)ruthenium(II) ions [RuH(η2-H2)(diphosphine)2]+ (diphosphine =) Tj ETQq0	0 @r&BT	Ovezlock 101
125	Agostic Interaction and Intramolecular Hydrogen Exchange in Coordinatively Unsaturated Ruthenium Complexes: Effects of Chelate Ring Size on Intramolecular Carbon-Hydrogen Bond Activation of Diphosphine Ligands. Organometallics, 1994, 13, 1911-1917.	1.1	33

Agostic interaction and hydrogen exchange in coordinatively unsaturated ruthenium complexes. Organometallics, 1993, 12, 3393-3395. 126 1.1 13

#	Article	IF	CITATIONS
127	Application of NMR Techniques to Organometallic Compounds Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 484-490.	0.0	1
128	Asymmetric transfer hydrogenation of prochiral carboxylic acids catalyzed by a five-coordinate Ru(II)-binap complex. Tetrahedron Letters, 1992, 33, 5783-5786.	0.7	48
129	Asymmetric hydrogenation of prochiral carboxylic acids catalyzed by the five-coordinate ruthenium(II)-hydride complex [RuH(binap)2]PF6(binap = R- or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 65	7 Todes(S-2,2	2â€3-bis(diph
130	Asymmetric hydrogenation of prochiral carboxylic acids and functionalized carbonyl compounds catalysed by ruthenium(II)-binap complexes with aryl nitriles (binap = (R)- or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	0 61 87 Td ((9)∂2,2′-bi

131 Chiral Pd(0) and Pd(II) Complexes. , 0, , 103-126.