
Peter Ponsaerts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3301840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Perinatal Derivatives in Ovarian Diseases. Frontiers in Bioengineering and Biotechnology, 2022, 10, 811875.	2.0	5
2	Morpho-functional comparison of differentiation protocols to create iPSC-derived cardiomyocytes. Biology Open, 2022, 11, .	0.6	3
3	Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia, 2022, 70, 1170-1190.	2.5	33
4	Luminescent HumanÂiPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen–glucose Deprivation. Neurotherapeutics, 2022, 19, 550-569.	2.1	5
5	Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. Journal of Neuroinflammation, 2022, 19, 102.	3.1	5
6	Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. International Journal of Molecular Sciences, 2022, 23, 7140.	1.8	4
7	Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair. Journal of Leukocyte Biology, 2021, 110, 89-106.	1.5	6
8	Murine induced pluripotent stem cellâ€derived neuroimmune cell culture models emphasize opposite immuneâ€effector functions of interleukin 13â€primed microglia and macrophages in terms of neuroimmune toxicity. Glia, 2021, 69, 326-345.	2.5	4
9	Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma. Cancers, 2021, 13, 579.	1.7	26
10	Effect of Oral Allylnitrile Administration on Cochlear Functioning in Mice Following Comparison of Different Anesthetics for Hearing Assessment. Frontiers in Toxicology, 2021, 3, 641569.	1.6	0
11	On the pathophysiology of DFNA9: Effect of pathogenic variants in the COCH gene on inner ear functioning in human and transgenic mice. Hearing Research, 2021, 401, 108162.	0.9	17
12	PapRIV, a BV-2 microglial cell activating quorum sensing peptide. Scientific Reports, 2021, 11, 10723.	1.6	20
13	Long-term ovarian hormone deprivation alters functional connectivity, brain neurochemical profile and white matter integrity in the Tg2576 amyloid mouse model of Alzheimer's disease. Neurobiology of Aging, 2021, 102, 139-150.	1.5	7
14	Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiology of Disease, 2021, 155, 105371.	2.1	4
15	Editorial: Perinatal Derivatives and the Road to Clinical Translation, Volume I. Frontiers in Bioengineering and Biotechnology, 2021, 9, 741156.	2.0	0
16	Transduction Efficiency and Immunogenicity of Viral Vectors for Cochlear Gene Therapy: A Systematic Review of Preclinical Animal Studies. Frontiers in Cellular Neuroscience, 2021, 15, 728610.	1.8	5
17	Cochlin Deficiency Protects Aged Mice from Noise-Induced Hearing Loss. International Journal of Molecular Sciences, 2021, 22, 11549.	1.8	5
18	Attitudes of Potential Participants Towards Potential Gene Therapy Trials in Autosomal Dominant Progressive Sensorineural Hearing Loss. Otology and Neurotology, 2021, 42, 384-389.	0.7	3

#	Article	IF	CITATIONS
19	On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament. Frontiers in Neurology, 2020, 11, 580639.	1.1	21
20	Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomaterials Science, 2020, 8, 4997-5004.	2.6	15
21	CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S98-S116.	2.4	57
22	Neuroprotective modulation of microglia effector functions following priming with interleukin 4 and 13: current limitations in understanding their mode-of-action. Brain, Behavior, and Immunity, 2020, 88, 856-866.	2.0	30
23	Neuroglobin Expression Models as a Tool to Study Its Function. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	1.9	17
24	Connecting the Dots in the Neuroglobin-Protein Interaction Network of an Unstressed and Ferroptotic Cell Death Neuroblastoma Model. Cells, 2019, 8, 873.	1.8	12
25	Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. Journal of Neuroinflammation, 2019, 16, 167.	3.1	20
26	CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15. Cancers, 2019, 11, 1029.	1.7	7
27	Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation. Brain, Behavior, and Immunity, 2019, 82, 406-421.	2.0	19
28	Expression of Translocator Protein and [18F]-GE180 Ligand Uptake in Multiple Sclerosis Animal Models. Cells, 2019, 8, 94.	1.8	32
29	Increased soluble amyloid-beta causes early aberrant brain network hypersynchronisation in a mature-onset mouse model of amyloidosis. Acta Neuropathologica Communications, 2019, 7, 180.	2.4	19
30	Loss of Neuroglobin Expression Alters Cdkn1a/Cdk6-Expression Resulting in Increased Proliferation of Neural Stem Cells. Stem Cells and Development, 2018, 27, 378-390.	1.1	9
31	Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke. Journal of Neuroinflammation, 2018, 15, 174.	3.1	57
32	Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation or (harmless) side-effect?. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2846-2852.	1.3	9
33	Concise Review: Innate and Adaptive Immune Recognition of Allogeneic and Xenogeneic Cell Transplants in the Central Nervous System. Stem Cells Translational Medicine, 2017, 6, 1434-1441.	1.6	34
34	Multipotent adult progenitor cells improve the hematopoietic function in myelodysplasia. Cytotherapy, 2017, 19, 744-755.	0.3	3
35	Intracerebral delivery of the M2 polarizing cytokine interleukin 13 using mesenchymal stem cell implants in a model of temporal lobe epilepsy in mice. Epilepsia, 2017, 58, 1063-1072.	2.6	23
36	Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia, 2017, 65, 1900-1913.	2.5	56

Peter Ponsaerts

#	Article	IF	CITATIONS
37	Cell-Based Delivery of Interleukin-13 Directs Alternative Activation ofÂMacrophages Resulting in Improved Functional Outcome afterÂSpinalÂCordÂlnjury. Stem Cell Reports, 2016, 7, 1099-1115.	2.3	65
38	Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. Journal of Neuroinflammation, 2016, 13, 288.	3.1	34
39	Interleukin-25 is detrimental for recovery after spinal cord injury in mice. Journal of Neuroinflammation, 2016, 13, 101.	3.1	9
40	Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia, 2016, 64, 2181-2200.	2.5	53
41	In Vivo Interleukin-13-Primed Macrophages Contribute to Reduced Alloantigen-Specific T Cell Activation and Prolong Immunological Survival of Allogeneic Mesenchymal Stem Cell Implants. Stem Cells, 2016, 34, 1971-1984.	1.4	17
42	Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. NeuroImage, 2016, 125, 363-377.	2.1	122
43	Early Inflammatory Responses following Cell Grafting in the CNS Trigger Activation of the Subventricular Zone: A Proposed Model of Sequential Cellular Events. Cell Transplantation, 2015, 24, 1481-1492.	1.2	19
44	Cell-Based Therapies in Lower Urinary Tract Disorders. Cell Transplantation, 2015, 24, 1679-1686.	1.2	0
45	Distinct In Vitro Properties of Embryonic and Extraembryonic Fibroblast-Like Cells are Reflected in their in Vivo Behavior following Grafting in the Adult Mouse Brain. Cell Transplantation, 2015, 24, 223-233.	1.2	6
46	Cuprizoneâ€induced demyelination and demyelinationâ€associated inflammation result in different proton magnetic resonance metabolite spectra. NMR in Biomedicine, 2015, 28, 505-513.	1.6	20
47	Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neurolmage, 2015, 114, 128-135.	2.1	33
48	3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials, 2015, 41, 122-131.	5.7	75
49	Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain. Immunology and Cell Biology, 2014, 92, 650-658.	1.0	30
50	Multimodal imaging of micronâ€sized iron oxide particles following <i>in vitro</i> and <i>in vivo</i> uptake by stem cells: down to the nanometer scale. Contrast Media and Molecular Imaging, 2014, 9, 400-408.	0.4	9
51	Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neuroscience and Biobehavioral Reviews, 2014, 47, 485-505.	2.9	352
52	Except for C-C chemokine receptor 7 expression, monocyte-derived dendritic cells from patients with multiple sclerosis are functionally comparable to those of healthy controls. Cytotherapy, 2014, 16, 1024-1030.	0.3	8
53	Multimodal imaging of subventricular zone neural stem/progenitor cells in the cuprizone mouse model reveals increased neurogenic potential for the olfactory bulb pathway, but no contribution to remyelination of the corpus callosum. NeuroImage, 2014, 86, 99-110.	2.1	33
54	Histological Characterization and Quantification of Cellular Events Following Neural and Fibroblast(-Like) Stem Cell Grafting in Healthy and Demyelinated CNS Tissue. Methods in Molecular Biology, 2014, 1213, 265-283.	0.4	7

Peter Ponsaerts

#	Article	IF	CITATIONS
55	Quantitative and phenotypic analysis of mesenchymal stromal cell graft survival and recognition by microglia and astrocytes in mouse brain. Immunobiology, 2013, 218, 696-705.	0.8	37
56	Smooth muscle cell transplantation improves bladder contractile function in streptozocin-induced diabetic rats. Cytotherapy, 2013, 15, 869-878.	0.3	13
57	Quantitative Evaluation of Stem Cell Grafting in the Central Nervous System of Mice by In Vivo Bioluminescence Imaging and Postmortem Multicolor Histological Analysis. Methods in Molecular Biology, 2013, 1052, 125-141.	0.4	6
58	Tackling the physiological barriers for successful mesenchymal stem cell transplantation into the central nervous system. Stem Cell Research and Therapy, 2013, 4, 101.	2.4	23
59	Injury-Dependent Retention of Intraportally Administered Mesenchymal Stromal Cells Following Partial Hepatectomy of Steatotic Liver Does Not Lead to Improved Liver Recovery. PLoS ONE, 2013, 8, e69092.	1.1	8
60	Biochemical Parameters for Longitudinal Monitoring of Liver Function in Rat Models of Partial Hepatectomy Following Liver Injury. PLoS ONE, 2013, 8, e66383.	1.1	1
61	Multimodal Imaging of Stem Cell Implantation in the Central Nervous System of Mice. Journal of Visualized Experiments, 2012, , e3906.	0.2	6
62	Interferon-Î ³ modulates the functional profile of in-vitro-cultured porcine microglia. NeuroReport, 2012, 23, 519-524.	0.6	4
63	Cell Type-Associated Differences in Migration, Survival, and Immunogenicity following Grafting in CNS Tissue. Cell Transplantation, 2012, 21, 1867-1881.	1.2	36
64	Multimodal in vivoimaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing. BMC Biotechnology, 2012, 12, 93.	1.7	23
65	Stem cell therapy for multiple sclerosis: preclinical evidence beyond all doubt?. Regenerative Medicine, 2012, 7, 245-259.	0.8	16
66	Identification and characterization of Huntington related pathology: An in vivo DKI imaging study. NeuroImage, 2012, 63, 653-662.	2.1	34
67	Spatiotemporal evolution of early innate immune responses triggered by neural stem cell grafting. Stem Cell Research and Therapy, 2012, 3, 56.	2.4	34
68	Current Challenges for the Advancement of Neural Stem Cell Biology and Transplantation Research. Stem Cell Reviews and Reports, 2012, 8, 262-278.	5.6	75
69	Clinical Potential of Intravenous Neural Stem Cell Delivery for Treatment of Neuroinflammatory Disease in Mice?. Cell Transplantation, 2011, 20, 851-870.	1.2	45
70	Biological and Physicochemical Characterization of a Serum-and Xeno-Free Chemically Defined Cryopreservation Procedure for Adult Human Progenitor Cells. Cell Transplantation, 2011, 20, 1241-1257.	1.2	36
71	Labeling of Luciferase/eGFP-Expressing Bone Marrow-Derived Stromal Cells with Fluorescent Micron-Sized Iron Oxide Particles Improves Quantitative and Qualitative Multimodal Imaging of Cellular Grafts In Vivo. Molecular Imaging and Biology, 2011, 13, 1133-1145.	1.3	21
72	Recognition of cellular implants by the brain's innate immune system. Immunology and Cell Biology, 2011, 89, 511-516.	1.0	23

#	Article	IF	CITATIONS
73	The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunology, Immunotherapy, 2010, 59, 35-46.	2.0	51
74	The ratio of SRPK1/SRPK1a regulates erythroid differentiation in K562 leukaemic cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1319-1331.	1.9	13
75	Increased caspase activation and decreased TDPâ€43 solubility in progranulin knockout cortical cultures. Journal of Neurochemistry, 2010, 115, 735-747.	2.1	57
76	Phospholipid Scramblase 1 Is Secreted by a Lipid Raft-dependent Pathway and Interacts with the Extracellular Matrix Protein 1 in the Dermal Epidermal Junction Zone of Human Skin. Journal of Biological Chemistry, 2010, 285, 37823-37837.	1.6	31
77	Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells and Development, 2010, 19, 143-154.	1.1	127
78	Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice. BMC Biotechnology, 2009, 9, 1.	1.7	78
79	Allogeneic stromal cell implantation in brain tissue leads to robust microglial activation. Immunology and Cell Biology, 2009, 87, 267-273.	1.0	35
80	Microglia: gatekeepers of central nervous system immunology. Journal of Leukocyte Biology, 2009, 85, 352-370.	1.5	275
81	Can cell therapy heal a spinal cord injury?. Spinal Cord, 2008, 46, 532-539.	0.9	56
82	Immunosuppression induced by immature dendritic cells is mediated by TGFâ€Î²/ILâ€10 doubleâ€positive CD4 ⁺ regulatory T cells. Journal of Cellular and Molecular Medicine, 2008, 12, 690-700.	1.6	75
83	The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy. Oncologist, 2008, 13, 859-875.	1.9	192
84	Regulatory T Cells and Human Disease. Clinical and Developmental Immunology, 2007, 2007, 1-10.	3.3	139
85	Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. Journal of Leukocyte Biology, 2007, 82, 1365-1374.	1.5	192
86	Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord. BMC Biotechnology, 2007, 7, 90.	1.7	50
87	Proinflammatory response of human leukemic cells to dsRNA transfection linked to activation of dendritic cells. Leukemia, 2007, 21, 1691-1699.	3.3	43
88	mRNAâ€Mediated Gene Delivery Into Human Progenitor Cells Promotes Highly Efficient Protein Expression. Journal of Cellular and Molecular Medicine, 2007, 11, 521-530.	1.6	48
89	mRNA-based gene transfer as a tool for gene and cell therapy. Current Opinion in Molecular Therapeutics, 2007, 9, 423-31.	2.8	61
90	Sensitive detection of human papillomavirus type 16 E7-specific T cells by ELISPOT after multiple in vitro stimulations of CD8+ T cells with peptide-pulsed autologous dendritic cells. Molecular Cancer, 2006, 5, 49.	7.9	4

#	Article	IF	CITATIONS
91	Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env proteins. Blood, 2006, 107, 1818-1827.	0.6	56
92	Simultaneous Activation of Viral Antigen-specific Memory CD4+ and CD8+ T-cells Using mRNA-electroporated CD40-activated Autologous B-cells. Journal of Immunotherapy, 2006, 29, 512-523.	1.2	12
93	Cellular Immunotherapy for Cytomegalovirus and HIV-1 Infection. Journal of Immunotherapy, 2006, 29, 107-121.	1.2	10
94	Modulation of cellular behavior by exogenous messenger RNA. Leukemia, 2006, 20, 767-769.	3.3	11
95	Induction of Potentially Protective HIV-Specific T-Cell Responses In Vitro by Gag mRNA-Electroporated Dendritic Cells Blood, 2006, 108, 1261-1261.	0.6	Ο
96	Highly Efficient mRNA- and cDNA-Based Transient Gene Delivery into Human Progenitor Cells Blood, 2006, 108, 5471-5471.	0.6	0
97	Double-Stranded RNA Acts as a Strong Danger Signal in Human Myeloid Leukemia Cells Leading to Increased Immunogenicity Blood, 2006, 108, 5203-5203.	0.6	Ο
98	Dendritic Cell-Induced T Cell Non-Responsiveness Is Mediated by FOXP3+ and TGF-beta+IL-10+ CD4+ T Cells Blood, 2006, 108, 3891-3891.	0.6	0
99	Antigen-specific cellular immunotherapy of leukemia. Leukemia, 2005, 19, 1863-1871.	3.3	54
100	Ex vivoinduction of viral antigen-specific CD8+ T cell responses using mRNA-electroporated CD40-activated B cells. Clinical and Experimental Immunology, 2005, 139, 458-467.	1.1	35
101	Activation of HIV-1-Specific CD8+ and CD4+ Autologous Memory T-Cells by Dendritic Cells and B-Cells Electroporated with mRNA Encoding Consensus or Autologous HIV-1 Proteins Blood, 2005, 106, 326-326.	0.6	0
102	Highly Efficient mRNA-Based Gene Transfer in Feeder-Free Cultured H9 Human Embryonic Stem Cells. Cloning and Stem Cells, 2004, 6, 211-216.	2.6	18
103	Messenger RNA electroporation is highly efficient in mouse embryonic stem cells: successful FLPe- and Cre-mediated recombination. Gene Therapy, 2004, 11, 1606-1610.	2.3	17
104	RNA-based gene transfer for adult stem cells and T cells. Leukemia, 2004, 18, 1898-1902.	3.3	56
105	Immunotargetting of the Wilms' Tumor WT1 Antigen for Dendritic Cell and B-Cell-Based Vaccination of Leukemia Blood, 2004, 104, 2541-2541.	0.6	Ο
106	Efficient Non-Viral Transfection of Mouse and Human Embryonic Stem Cells Blood, 2004, 104, 5267-5267.	0.6	0
107	RNA Electroporation as a New Gene Transfer Method in Hematopoietic Progenitor Cells, Mesenchymal Cells and Activated T-Cells Blood, 2004, 104, 5269-5269.	0.6	0
108	Cancer immunotherapy using RNA-loaded dendritic cells. Clinical and Experimental Immunology, 2003, 134, 378-384.	1.1	95

7

#	Article	IF	CITATIONS
109	Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA. Biochemical and Biophysical Research Communications, 2003, 305, 10-15.	1.0	17
110	Messenger RNA Electroporation of Human Monocytes, Followed by Rapid In Vitro Differentiation, Leads to Highly Stimulatory Antigen-Loaded Mature Dendritic Cells. Journal of Immunology, 2002, 169, 1669-1675.	0.4	56
111	mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia, 2002, 16, 1324-1330.	3.3	53
112	Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood, 2001, 98, 49-56.	0.6	438
113	Efficient generation of stably electrotransfected human hematopoietic cell lines without drug selection by consecutive FACsorting. Cytometry, 2000, 41, 31-35.	1.8	17
114	High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery. Gene Therapy, 2000, 7, 1431-1437.	2.3	56
115	Increased Soluble Aβ in adult mice causes pathological brain network hypersynchronisation early after induction. Frontiers in Neuroscience, 0, 13, .	1.4	Ο