Michael A Groeber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3301719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards In-process Prediction of Voids in Laser Powder Bed Fusion. Jom, 2021, 73, 3240-3249.	1.9	2
2	Multimodal Registration and Fusion of In Situ and Ex Situ Metal Additive Manufacturing Data. Jom, 2021, 73, 3250-3262.	1.9	6
3	AFRL Additive Manufacturing Modeling Series: Challenge 1, Characterization of Residual Strain Distribution in Additively-Manufactured Metal Parts Using Energy-Dispersive Diffraction. Integrating Materials and Manufacturing Innovation, 2021, 10, 525.	2.6	2
4	Laser Powder Bed Fusion Parameter Selection via Machine-Learning-Augmented Process Modeling. Jom, 2020, 72, 4393-4403.	1.9	15
5	Zoning additive manufacturing process histories using unsupervised machine learning. Materials Characterization, 2020, 161, 110123.	4.4	35
6	Developing Virtual Microstructures and Statistically Equivalent Representative Volume Elements for Polycrystalline Materials. , 2020, , 1631-1656.		4
7	Associating local microstructure with predicted thermally-induced stress hotspots using convolutional neural networks. Materials Characterization, 2019, 158, 109960.	4.4	13
8	A discrete source model of powder bed fusion additive manufacturing thermal history. Additive Manufacturing, 2019, 25, 485-498.	3.0	38
9	Developing Virtual Microstructures and Statistically Equivalent Representative Volume Elements for Polycrystalline Materials. , 2018, , 1-26.		1
10	Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. Jom, 2017, 69, 848-855.	1.9	71
11	DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integrating Materials and Manufacturing Innovation, 2014, 3, 56-72.	2.6	658
12	Modeling the effect of voxel resolution on the accuracy of phantom grain ensemble statistics. Materials Characterization, 2014, 90, 136-150.	4.4	6
13	Tail Departure of Log-Normal Grain Size Distributions in Synthetic Three-Dimensional Microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2810-2822.	2.2	31
14	Comparison of grain size distributions in a Ni-based superalloy in three and two dimensions using the Saltykov method. Scripta Materialia, 2012, 66, 554-557.	5.2	31
15	A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generationâ~†. Acta Materialia, 2008, 56, 1274-1287.	7.9	192
16	Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials. Jom, 2007, 59, 32-36.	1.9	20
17	3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Materialia, 2006, 55, 23-28.	5.2	240