W Paul Menzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330120/publications.pdf

Version: 2024-02-01

159 papers 13,016 citations

47 h-index 26792 111 g-index

161 all docs

161 docs citations

161 times ranked

8346 citing authors

#	Article	IF	CITATIONS
1	Estimate of daytime single-layer cloud base height from advanced baseline imager measurements. Remote Sensing of Environment, 2022, 274, 112970.	4.6	13
2	The Influence of Subâ€Footprint Cloudiness on Threeâ€Dimensional Horizontal Wind From Geostationary Hyperspectral Infrared Sounder Observations. Geophysical Research Letters, 2022, 49, .	1.5	3
3	Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion. Atmospheric Measurement Techniques, 2021, 14, 1191-1203.	1.2	2
4	Changes in HIRS Detection of Cloud over Australia from 1985 to 2001. Remote Sensing, 2021, 13, 917.	1.8	2
5	Fourâ€Dimensional Wind Fields From Geostationary Hyperspectral Infrared Sounder Radiance Measurements With High Temporal Resolution. Geophysical Research Letters, 2021, 48, e2021GL093794.	1.5	25
6	Can Current Hyperspectral Infrared Sounders Capture the Small Scale Atmospheric Water Vapor Spatial Variations?. Geophysical Research Letters, 2021, 48, e2021GL095825.	1.5	5
7	History of Geostationary Weather Satellites. , 2020, , 5-11.		5
8	Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sensing of Environment, 2020, 239, 111616.	4.6	64
9	Improving the Understanding of CrIS Full Spectral Resolution Nonlocal Thermodynamic Equilibrium Radiances Using Spectral Correlation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032710.	1.2	4
10	Global Climate. Bulletin of the American Meteorological Society, 2020, 101, S9-S128.	1.7	61
11	Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion. Atmospheric Measurement Techniques, 2020, 13, 4035-4049.	1.2	5
12	Approach to enhance trace gas determinations through multi-satellite data fusion. Journal of Applied Remote Sensing, 2020, 14 , .	0.6	2
13	Low earth orbit sounder retrieval products at geostationary earth orbit spatial and temporal scales. Journal of Applied Remote Sensing, 2020, 14, .	0.6	2
14	Characteristics of Satellite Sampling Errors in Total Precipitable Water from SSMIS, HIRS, and COSMIC Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6966-6981.	1.2	14
15	Observed HIRS and MODIS High-Cloud Frequencies in the 2000s. Journal of Applied Meteorology and Climatology, 2019, 58, 2469-2478.	0.6	3
16	Imager and sounder data fusion to generate sounder retrieval products at an improved spatial and temporal resolution. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	5
17	Enhancing the Fast Radiative Transfer Model for FengYunâ€4 GIIRS by Using Local Training Profiles. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,583.	1.2	34
18	Intercomparison Between VIIRS and CrIS by Taking Into Account the CrIS Subpixel Cloudiness and Viewing Geometry. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5335-5345.	1.2	8

#	Article	IF	Citations
19	Satellite-Based Atmospheric Infrared Sounder Development and Applications. Bulletin of the American Meteorological Society, 2018, 99, 583-603.	1.7	124
20	Fusion of satellite-based imager and sounder data to construct supplementary high spatial resolution narrowband IR radiances. Journal of Applied Remote Sensing, 2017, 11 , 1 .	0.6	10
21	Improvements to Terra MODIS L1B, L2, and L3 science products through using crosstalk corrected L1B radiances. , 2017, , .		9
22	Mathematical aspects in the meteorological interpretation of satellite hyperspectral infrared measurements part II: estimates of the cloud absorption vertical profile of Hurricane loke on 28 August 2006. International Journal of Remote Sensing, 2017, 38, 57-79.	1.3	0
23	HYDRA2: A Multispectral Data Analysis Toolkit for Sensors on Suomi-NPP and Other Current Satellite Platforms. Bulletin of the American Meteorological Society, 2016, 97, 1283-1294.	1.7	1
24	Mathematical aspects of the meteorological interpretation of satellite hyperspectral infrared measurements part I: statement of the inverse problem for estimation of the cloud absorption vertical profile. International Journal of Remote Sensing, 2016, 37, 1601-1619.	1.3	1
25	Reprocessing of HIRS Satellite Measurements from 1980 to 2015: Development toward a Consistent Decadal Cloud Record. Journal of Applied Meteorology and Climatology, 2016, 55, 2397-2410.	0.6	17
26	Using SEVIRI fire observations to drive smoke plumes in the CMAQ air quality model: a case study over Antalya in 2008. Atmospheric Chemistry and Physics, 2015, 15, 8539-8558.	1.9	20
27	A Look at the Evolution of Meteorological Satellites: Advancing Capabilities and Meeting User Requirements. Weather, Climate, and Society, 2015, 7, 309-320.	0.5	13
28	Cloud Detection of MODIS Multispectral Images. Journal of Atmospheric and Oceanic Technology, 2014, 31, 347-365.	0.5	15
29	Review of Terra MODIS thermal emissive band L1B radiometric performance. Proceedings of SPIE, 2014, ,	0.8	2
30	Agricultural policy effects on land cover and land use over 30 years in Tartous, Syria, as seen in Landsat imagery. Journal of Applied Remote Sensing, 2014, 8, 083506.	0.6	5
31	Height Assignment Improvement in Kalpana-1 Atmospheric Motion Vectors. Journal of the Indian Society of Remote Sensing, 2014, 42, 679-687.	1.2	15
32	Very high cloud detection in more than two decades of HIRS data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3278-3284.	1.2	5
33	Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3826-3852.	2.7	441
34	Comparing Ship-Track Droplet Sizes Inferred from Terra and Aqua MODIS Data. Journal of Applied Meteorology and Climatology, 2013, 52, 230-241.	0.6	2
35	Impact of the Aqua MODIS Band 6 Restoration on Cloud/Snow Discrimination. Journal of Atmospheric and Oceanic Technology, 2013, 30, 2712-2719.	0.5	6
36	A Uniform Space–Time Gridding Algorithm for Comparison of Satellite Data Products: Characterization and Sensitivity Study. Journal of Applied Meteorology and Climatology, 2013, 52, 255-268.	0.6	8

3

#	Article	IF	CITATIONS
37	Statistical estimation of a $13.3 \hat{A} < i > \hat{1} / 4 < i> m$ Visible Infrared Imaging Radiometer Suite channel using multisensor data fusion. Journal of Applied Remote Sensing, 2013, 7, 073473.	0.6	5
38	Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel. Bulletin of the American Meteorological Society, 2013, 94, 1031-1049.	1.7	437
39	Intersatellite calibration of NOAA HIRS CO ₂ channels for climate studies. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5190-5203.	1.2	21
40	An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data. Journal of Applied Meteorology and Climatology, 2012, 51, 1477-1488.	0.6	5
41	MODIS Cloud-Top Property Refinements for Collection 6. Journal of Applied Meteorology and Climatology, 2012, 51, 1145-1163.	0.6	192
42	Determining diurnal variations of land surface emissivity from geostationary satellites. Journal of Geophysical Research, 2012, 117 , .	3.3	35
43	Improved Profile and Cloud Top Height Retrieval by Using Dual Regression on High-Spectral Resolution Measurements. , 2011, , .		7
44	Merging High Spectral Resolution Sounder Data with High Spatial Resolution Imager Data to infer Global Cloud Cover Properties. , $2011, \ldots$		0
45	Sensitivity of Monthly Cloud Statistics to Space and Time Considerations. , 2011, , .		0
46	Detection of multi-layer and vertically-extended clouds using A-train sensors. Atmospheric Measurement Techniques, 2010, 3, 233-247.	1.2	46
47	Geometric Cloud Top Height assignment by geosynchronous meteorological satellite images. , 2009, , .		O
48	Inferring Convective Weather Characteristics with Geostationary High Spectral Resolution IR Window Measurements: A Look into the Future. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1527-1541.	0.5	15
49	Intercalibration of Broadband Geostationary Imagers Using AIRS. Journal of Atmospheric and Oceanic Technology, 2009, 26, 746-758.	0.5	42
50	Forecasting and nowcasting improvement in cloudy regions with high temporal GOES sounder infrared radiance measurements. Journal of Geophysical Research, 2009, 114, .	3.3	20
51	Satellite Meteorology. Bulletin of the American Meteorological Society, 2009, 90, 1435-1436.	1.7	1
52	GOES sounding improvement and applications to severe storm nowcasting. Geophysical Research Letters, 2008, 35, .	1.5	31
53	Global characterization of cirrus clouds using CALIPSO data. Journal of Geophysical Research, 2008, 113, .	3.3	115
54	MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results. Journal of Applied Meteorology and Climatology, 2008, 47, 1175-1198.	0.6	256

#	Article	IF	Citations
55	Deriving Atmospheric Temperature of the Tropopause Region–Upper Troposphere by Combining Information from GPS Radio Occultation Refractivity and High-Spectral-Resolution Infrared Radiance Measurements. Journal of Applied Meteorology and Climatology, 2008, 47, 2300-2310.	0.6	5
56	Analysis of multispectral fields of satellite IR measurements: Using statistics of second spatial differential of spectral fields for measurement characterization. International Journal of Remote Sensing, 2008, 29, 2105-2125.	1.3	3
57	Introducing HYDRA: A Multispectral Data Analysis Toolkit. Bulletin of the American Meteorological Society, 2007, 88, 159-166.	1.7	4
58	Intercalibrating geostationary imagers via polar orbiting high spectral resolution data. Proceedings of SPIE, 2007, 6684, 389.	0.8	7
59	Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophysical Research Letters, 2007, 34, .	1.5	116
60	Comparison between current and future environmental satellite imagers on cloud classification using MODIS. Remote Sensing of Environment, 2007, 108, 311-326.	4.6	29
61	Development and Demonstration of Hyperspectral Infrared Only Sounding Retrieval. , 2007, , .		1
62	Impact of point spread function on infrared radiances from geostationary Satellites. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 2176-2183.	2.7	19
63	Wedge-filter Imaging Sounder for Humidity (WISH): a practical NPOESS P3I and geostationary Earth orbit high-spatial resolution sensor., 2005, 5655, 33.		1
64	Retrieval of Cloud Microphysical Properties from MODIS and AIRS. Journal of Applied Meteorology and Climatology, 2005, 44, 1526-1543.	1.7	71
65	A Four-Season Impact Study of Rawinsonde, GOES, and POES Data in the Eta Data Assimilation System. Part II: Contribution of the Components. Weather and Forecasting, 2005, 20, 178-198.	0.5	22
66	Global cloud cover trends inferred from two decades of HIRS observations. , 2005, 5658, 283.		1
67	Using ABI to help HES for cloud property and atmospheric sounding retrieval. , 2005, , .		0
68	A Four-Season Impact Study of Rawinsonde, GOES, and POES Data in the Eta Data Assimilation System. Part I: The Total Contribution. Weather and Forecasting, 2005, 20, 161-177.	0.5	18
69	Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 1266-1278.	2.7	80
70	Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights. Annales Geophysicae, 2005, 23, 2415-2424.	0.6	42
71	INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R. Bulletin of the American Meteorological Society, 2005, 86, 1079-1096.	1.7	439
72	Trends in Global Cloud Cover in Two Decades of HIRS Observations. Journal of Climate, 2005, 18, 3021-3031.	1.2	277

#	Article	IF	CITATIONS
73	Possible scanning scenarios of the GOES-R HES (Hyperspectral Environmental Suite). , 2005, , .		1
74	Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites. Bulletin of the American Meteorological Society, 2005, 86, 205-224.	1.7	179
75	Vertical resolution study on the GOES-R Hyperspectral Environmental Suite (HES). , 2005, , .		1
76	Evaluation of AIRS cloud properties using MPACE data. Geophysical Research Letters, 2005, 32, .	1.5	4
77	Nighttime polar cloud detection with MODIS. Remote Sensing of Environment, 2004, 92, 181-194.	4.6	99
78	AIRS Subpixel Cloud Characterization Using MODIS Cloud Products. Journal of Applied Meteorology and Climatology, 2004, 43, 1083-1094.	1.7	79
79	Intercalibration of the Infrared Window and Water Vapor Channels on Operational Geostationary Environmental Satellites Using a Single Polar-Orbiting Satellite. Journal of Atmospheric and Oceanic Technology, 2004, 21, 61-68.	0.5	52
80	Synergistic Use of MODIS and AIRS in a Variational Retrieval of Cloud Parameters. Journal of Applied Meteorology and Climatology, 2004, 43, 1619-1634.	1.7	38
81	Evaluation of MODIS thermal IR band L1B radiances during SAFARI 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	24
82	Combining radio occultation refractivities and IR/MW radiances to derive temperature and moisture profiles: A simulation study plus early results using CHAMP and ATOVS. Journal of Geophysical Research, 2003, 108 , .	3.3	7
83	High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS Multispectral Band Measurements. Journal of Applied Meteorology and Climatology, 2003, 42, 204-226.	1.7	61
84	NPOESS Preparatory Project (NPP) instrument characterization and calibration, and products validation: an integrated strategy in preparation for NPOESS new generation of environmental satellites. , 2003, , .		0
85	Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 442-458.	2.7	838
86	Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 482-492.	2.7	74
87	The MODIS cloud products: algorithms and examples from terra. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 459-473.	2.7	1,497
88	Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances., 2003,,.		6
89	Advanced baseline imager (ABI) for future geostationary operational environmental satellites (GOES-R) Tj ETQq1	1 0.78431	14 ggBT /Ove
90	HIRS observations of clouds since 1978., 2003, 4895, 55.		1

#	Article	IF	Citations
91	Advanced baseline sounder (ABS) for future geostationary operational environmental satellites (GOES-R and beyond)., 2003, 4895, 103.		2
92	Mathematical Aspects of the Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part III: Emissivity Estimation in Solving the Inverse Problem of Atmospheric Remote Sensing. Journal of Applied Meteorology and Climatology, 2003, 42, 1533-1546.	1.7	0
93	MODIS cloud mask: current situation and its improvements. , 2003, , .		O
94	Assessment of Aqua MODIS and AIRS TIR band L1B radiances using ER-2-based observations during TX-2002. , 2003, , .		3
95	Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances. Journal of Applied Meteorology and Climatology, 2003, 42, 1072-1091.	1.7	216
96	Destriping for MODIS data via wavelet shrinkage. , 2003, 4895, 187.		11
97	Mathematical Aspects in Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part II: Analysis of Spatial and Temporal Continuity of Spectral Measurements from the GOES-8Sounder. Journal of Applied Meteorology and Climatology, 2003, 42, 671-685.	1.7	4
98	<title>Radiometric evaluation of MODIS emissive bands through comparison to ER-2-based MAS data <math display="inline"></math> /title>. , 2002, , .</td><td></td><td>4</td></tr><tr><td>99</td><td>An Impact Study of Five Remotely Sensed and Five In Situ Data Types in the Eta Data Assimilation System. Weather and Forecasting, 2002, 17, 263-285.</td><td>0.5</td><td>27</td></tr><tr><td>100</td><td><math display="inline"><\!</math> title>Simulation study combining radio occultation data and IR/MW radiances to derive temperature and moisture profiles <math display="inline"><\!</math> /title>. , 2002, , .</td><td></td><td>0</td></tr><tr><td>101</td><td>Validation and Use of GOES Sounder Moisture Information. Weather and Forecasting, 2002, 17, 139-154.</td><td>0.5</td><td>48</td></tr><tr><td>102</td><td>Retrieval of cloud top height, effective emissivity, and particle size, from aircraft high-spectral-resolution infrared measurements., 2002, 4539, 50.</td><td></td><td>O</td></tr><tr><td>103</td><td>Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. Applied Optics, 2002, 41, 909.</td><td>2.1</td><td>54</td></tr><tr><td>104</td><td>Improvement in thin cirrus retrievals using an emissivity-adjusted CO2slicing algorithm. Journal of Geophysical Research, 2002, 107, AAC 2-1-AAC 2-11.</td><td>3.3</td><td>23</td></tr><tr><td>105</td><td>Observations and trends of clouds based on GOES sounder data. Journal of Geophysical Research, 2001, 106, 20349-20363.</td><td>3.3</td><td>37</td></tr><tr><td>106</td><td>Estimation of Total Atmospheric Ozone from GOES Sounder Radiances with High Temporal Resolution. Journal of Atmospheric and Oceanic Technology, 2001, 18, 157-168.</td><td>0.5</td><td>28</td></tr><tr><td>107</td><td>Mathematical Aspects in Meteorological Processing of Infrared Spectral Measurements from the GOES Sounder. Part I: Constructing the Measurement Estimate Using Spatial Smoothing. Journal of Applied Meteorology and Climatology, 2001, 40, 556-567.</td><td>1.7</td><td>6</td></tr><tr><td>108</td><td>meeting summary: GOES–SST Validation Workshop. Bulletin of the American Meteorological Society, 2001, 82, 473-476.</td><td>1.7</td><td>1</td></tr></tbody></table></title>		

#	Article	IF	Citations
109	Variational Retrieval of Cloud Parameters from GOES Sounder Longwave Cloudy Radiance Measurements. Journal of Applied Meteorology and Climatology, 2001, 40, 312-330.	1.7	34
110	Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present. Bulletin of the American Meteorological Society, 2001, 82, 33-47.	1.7	112
111	A Case Study of the Sensitivity of the Eta Data Assimilation System. Weather and Forecasting, 2000, 15, 603-621.	0.5	33
112	The Effects of Surface Reflection on Estimating the Vertical Temperature–Humidity Distribution from Spectral Infrared Measurements. Journal of Applied Meteorology and Climatology, 2000, 39, 3-14.	1.7	23
113	Model Calculations and Interferometer Measurements of Ice-Cloud Characteristics. Journal of Applied Meteorology and Climatology, 2000, 39, 634-644.	1.7	30
114	Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation. Journal of Applied Meteorology and Climatology, 2000, 39, 1248-1268.	1.7	173
115	Retrieval of geophysical parameters from Moderate Resolution Imaging Spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm. Applied Optics, 2000, 39, 3537.	2.1	45
116	Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase. Journal of Geophysical Research, 2000, 105, 11781-11792.	3.3	157
117	A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2slicing. Journal of Geophysical Research, 1999, 104, 24547-24555.	3.3	61
118	Estimation of Sea Surface Temperatures UsingGOES-8/9Radiance Measurements. Bulletin of the American Meteorological Society, 1999, 80, 1127-1138.	1.7	73
119	Retrieval of total atmospheric ozone from GOES. , 1999, 3756, 384.		0
120	Eight Years of High Cloud Statistics Using HIRS. Journal of Climate, 1999, 12, 170-184.	1.2	286
121	Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 1998, 103, 32141-32157.	3.3	1,002
122	Retrieval of effective microphysical properties of clouds: A wave cloud case study. Geophysical Research Letters, 1998, 25, 1121-1124.	1.5	19
123	Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 1998, 103, 32215-32238.	3.3	521
124	An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. Journal of Geophysical Research, 1998, 103, 31821-31835.	3.3	235
125	The Operational GOES Infrared Rainfall Estimation Technique. Bulletin of the American Meteorological Society, 1998, 79, 1883-1898.	1.7	302
126	Retrieval of total atmospheric ozone from GOES sounder radiance measurements with high spatial and temporal resolution., 1998, 3501, 291.		2

#	Article	IF	Citations
127	International ATOVS processing package: algorithm design and its preliminary performance. Proceedings of SPIE, 1998, 3501, 196.	0.8	6
128	Application of GOES-8/9 Soundings to Weather Forecasting and Nowcasting. Bulletin of the American Meteorological Society, 1998, 79, 2059-2077.	1.7	111
129	<code><title>Spectral</code> characterization of MODIS Airborne Simulator (MAS) LWIR bands and application to MODIS science data cloud products <code></title>, 1997, , .</code>		0
130	Fully Automated Cloud-Drift Winds in NESDIS Operations. Bulletin of the American Meteorological Society, 1997, 78, 1121-1133.	1.7	129
131	Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations. Bulletin of the American Meteorological Society, 1997, 78, 173-195.	1.7	238
132	< title>Impact of the new-generation GOES on the determination of sea surface temperature $<$ /title>. , 1996, , .		4
133	<title>Monitoring biomass burning and aerosol loading and transport using multispectral GOES data</title> ., 1996, , .		1
134	<title>Automated cloud-motion winds from GOES-8 and -9 <math display="inline"></math> /title>. , 1996, , .</td><td></td><td>1</td></tr><tr><td>135</td><td><title>Blackbody emissivity considerations for radiometric calibration of the MODIS Airborne Simulator (MAS) thermal channels</title> ., 1996, 2820, 44.		6
136	Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties. Journal of Atmospheric and Oceanic Technology, 1996, 13, 777-794.	0.5	181
137	Observations of the Infrared Radiative Properties of the Oceanâ€"Implications for the Measurement of Sea Surface Temperature via Satellite Remote Sensing. Bulletin of the American Meteorological Society, 1996, 77, 41-51.	1.7	144
138	Evolution of Satellite Observations in the United States and Their Use in Meteorology., 1996,, 99-155.		14
139	Monthly Mean Large-Scale Analyses of Upper-Tropospheric Humidity and Wind Field Divergence Derived from Three Geostationary Satellites. Bulletin of the American Meteorological Society, 1995, 76, 1578-1584.	1.7	35
140	Four Years of Global Cirrus Cloud Statistics Using HIRS. Journal of Climate, 1994, 7, 1972-1986.	1.2	268
141	Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. Journal of Geophysical Research, 1994, 99, 16719.	3.3	132
142	Cloud Properties inferred from 8–12-µm Data. Journal of Applied Meteorology and Climatology, 1994, 33, 212-229.	1.7	244
143	Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites. Bulletin of the American Meteorological Society, 1994, 75, 757-781.	1.7	333
144	A Comparison of Ground and Satellite Observations of Cloud Cover. Bulletin of the American Meteorological Society, 1993, 74, 1851-1861.	1.7	36

#	Article	IF	Citations
145	A Comparison of Several Techniques to Assign Heights to Cloud Tracers. Journal of Applied Meteorology and Climatology, 1993, 32, 1559-1568.	1.7	99
146	Trends in global cirrus inferred from three years of HIRS data. , 1993, , .		3
147	Atlantic Data Coverage byMETEOSAT-3. Bulletin of the American Meteorological Society, 1992, 73, 977-983.	1.7	9
148	The Impact of Satellite-derived Winds on Numerical Hurricane Track Forecasting. Weather and Forecasting, 1992, 7, 107-118.	0.5	71
149	Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Transactions on Geoscience and Remote Sensing, 1992, 30, 2-27.	2.7	826
150	Visible and infrared spin scan radiometer atmospheric sounder water vapor and wind fields over Amazonia. Journal of Geophysical Research, 1990, 95, 17031-17038.	3.3	4
151	Two Years of Cloud Cover Statistics Using VAS. Journal of Climate, 1989, 2, 380-392.	1.2	115
152	Retrieval of Cloud Parameters from Satellite Sounder Data: A Simulation Study. Journal of Applied Meteorology and Climatology, 1989, 28, 267-275.	1.7	59
153	Atmospheric soundings from a geostationary satellite. Applied Optics, 1983, 22, 2686.	2.1	5
154	Visible infrared spin–scan radiometer atmospheric sounder radiometric calibration: an inflight evaluation from intercomparisons with HIRS and radiosonde measurements. Applied Optics, 1981, 20, 3641.	2.1	25
155	Clusterâ€type calculations of electronic structures of crystals by the method of linear combinations of atomic orbitals. Journal of Chemical Physics, 1975, 63, 4708-4715.	1.2	26
156	Optical Dielectric Function of the Lithium-Fluoride Crystal. Physical Review Letters, 1973, 30, 1313-1315.	2.9	39
157	Optical Dielectric Function of the Lithium-Fluoride Crystal Physical Review Letters, 1973, 31, 340-340.	2.9	0
158	Observing atmospheric moisture from geostationary orbit: how many channels is enough?., 0,,.		0
159	Remote sensing of global cloud properties using MODIS data. , 0, , .		1