Theodore A Endreny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3301171/publications.pdf

Version: 2024-02-01

91 papers 1,977 citations

304602 22 h-index 289141 40 g-index

98 all docs 98 docs citations 98 times ranked

2273 citing authors

#	Article	IF	CITATIONS
1	Variation in estimates of heat-related mortality reduction due to tree cover in U.S. cities. Journal of Environmental Management, 2022, 301, 113751.	3.8	12
2	Loss of street trees predicted to cause 6000ÂL/tree increase in leaf-on stormwater runoff for Great Lakes urban sewershed. Urban Forestry and Urban Greening, 2022, 74, 127649.	2.3	4
3	Modeling lives saved from extreme heat by urban tree cover✰. Ecological Modelling, 2021, 449, 109553.	1.2	17
4	Interacting drivers and their tradeoffs for predicting denitrification potential across a strong urban to rural gradient within heterogeneous landscapes. Journal of Environmental Management, 2021, 294, 113021.	3.8	4
5	Real Estate Values and Ecosystem Services: Correlation Levels. Smart Innovation, Systems and Technologies, 2021, , 802-810.	0.5	2
6	A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimões rivers, Brazil. Ecohydrology, 2020, 13, e2166.	1.1	29
7	A model to integrate urban river thermal cooling in river restoration. Journal of Environmental Management, 2020, 258, 110023.	3.8	35
8	Leverage Points Used in a Systems Approach of River and River Basin Restoration. Water (Switzerland), 2020, 12, 2606.	1.2	1
9	Tree Cover Is Unevenly Distributed Across Cities Globally, With Lowest Levels Near Highway Pollution Sources. Frontiers in Sustainable Cities, 2020, 2, .	1.2	5
10	The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services. Water (Switzerland), 2020, 12, 1680.	1.2	15
11	Dynamic Evapotranspiration Alters Hyporheic Flow and Residence Times in the Intrameander Zone. Water (Switzerland), 2020, 12, 424.	1.2	2
12	Characterization of Hyporheic Exchange Drivers and Patterns within a Low-Gradient, First-Order, River Confluence during Low and High Flow. Water (Switzerland), 2020, 12, 649.	1.2	12
13	i-Tree cool river: An open source, freeware tool to simulate river water temperature coupled with HEC-RAS. MethodsX, 2020, 7, 100808.	0.7	7
14	Generating electricity with urban green infrastructure microbial fuel cells. Journal of Cleaner Production, 2020, 263, 121337.	4.6	7
15	Real Estate Values, Tree Cover, and Per-Capita Income: An Evaluation of the Interdependencies in Buffalo City (NY). Lecture Notes in Computer Science, 2020, , 913-926.	1.0	12
16	Valuing Urban Tree Impacts on Precipitation Partitioning. , 2020, , 253-268.		11
17	Reduced Soil Macropores and Forest Cover Reduce Warmâ€Season Baseflow below Ecological Thresholds in the Upper Delaware River Basin. Journal of the American Water Resources Association, 2019, 55, 1268-1287.	1.0	4
18	A River Temperature Model to Assist Managers in Identifying Thermal Pollution Causes and Solutions. Water (Switzerland), 2019, 11, 1060.	1.2	27

#	Article	IF	CITATIONS
19	Bioindicators as a tool in environmental impact assessment: Cyanobacteria as a sentinel of pollution. International Journal of Sustainable Development and Planning, 2019, 14, 1-8.	0.3	4
20	Aerosol pollution, including eroded soils, intensifies cloud growth, precipitation, and soil erosion: A review. Journal of Cleaner Production, 2018, 189, 135-144.	4.6	17
21	Strategically growing the urban forest will improve our world. Nature Communications, 2018, 9, 1160.	5.8	153
22	Preface to the <i>Hydrological processes in urban environments: Updates on urbanization, naturalization and climate change</i> Special Issue. Hydrological Processes, 2018, 32, 3572-3575.	1.1	1
23	Environmental Data Acquisition, Elaboration and Integration: Preliminary Application to a Vulnerable Mountain Landscape and Village (Novalesa, NW Italy). Engineering, 2018, 4, 635-642.	3.2	2
24	Atmospheric Rivers Carry Nonmonsoon Extreme Precipitation Into Nepal. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5901-5912.	1.2	32
25	Remote sensing for environmental forensics: Thermal infrared images capture different surface temperatures in pollutant pools and dosed soils due to volatilization. Environmental Forensics, 2017, 18, 101-109.	1.3	5
26	Hydraulic complexity at a large river confluence in the Amazon basin. Ecohydrology, 2017, 10, e1863.	1.1	44
27	Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecological Modelling, 2017, 360, 328-335.	1.2	116
28	Effects of extreme floods on macroinvertebrate assemblages in tributaries to the Mohawk River, New York, <scp>USA</scp> . River Research and Applications, 2017, 33, 1060-1070.	0.7	14
29	Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landscape and Urban Planning, 2017, 157, 457-467.	3.4	95
30	Characterization of Terrestrial Discharges into Coastal Waters with Thermal Imagery from a Hierarchical Monitoring Program. Water (Switzerland), 2017, 9, 500.	1.2	11
31	Weighting Nitrogen and Phosphorus Pixel Pollutant Loads to Represent Runoff and Buffering Likelihoods. Journal of the American Water Resources Association, 2016, 52, 336-349.	1.0	7
32	Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA. Journal of Earth Science (Wuhan, China), 2016, 27, 9-14.	1.1	3
33	Quantifying the environmental impact of pollutant plumes from coastal rivers with remote sensing and river basin modelling. International Journal of Sustainable Development and Planning, 2016, 11, 651-662.	0.3	14
34	Streambed and water profile response to in hannel restoration structures in a laboratory meandering stream. Water Resources Research, 2015, 51, 9312-9324.	1.7	6
35	A Comparison of Hyporheic Transport at a Crossâ€Vane Structure and Natural Riffle. Ground Water, 2015, 53, 859-871.	0.7	17
36	Simulating the effect of flow path roughness to examine how green infrastructure restores urban runoff timing and magnitude. Urban Forestry and Urban Greening, 2015, 14, 361-367.	2.3	9

3

#	Article	IF	CITATIONS
37	Simulating Double-Peak Hydrographs from Single Storms over Mixed-Use Watersheds. Journal of Hydrologic Engineering - ASCE, 2015, 20, 06015003.	0.8	4
38	River Surface Water Topography Mapping at Sub-Millimeter Resolution and Precision With Close Range Photogrammetry: Laboratory Scale Application. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 602-608.	2.3	11
39	Analysis of Daily Peaking and Runâ€ofâ€River Operations with Flow Variability Metrics, Considering Subdaily to Seasonal Time Scales. Journal of the American Water Resources Association, 2014, 50, 1622-1640.	1.0	21
40	Comparing MODFLOW simulation options for predicting intraâ€meander flux. Hydrological Processes, 2014, 28, 3824-3832.	1.1	4
41	Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river. Water Resources Research, 2014, 50, 1689-1703.	1.7	54
42	Spatial and temporal intensification of lateral hyporheic flux in narrowing intraâ€meander zones. Hydrological Processes, 2013, 27, 989-994.	1.1	14
43	Watershed hydrograph model based on surface flow diffusion. Water Resources Research, 2013, 49, 507-516.	1.7	13
44	A physically based analytical spatial air temperature and humidity model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,449.	1.2	17
45	Natural channel design impacts on reach-scale transient storage. Ecological Engineering, 2013, 57, 380-392.	1.6	19
46	Surface water–groundwater interaction at restored streams and associated reference reaches. Hydrological Processes, 2013, 27, 3730-3746.	1.1	37
47	Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resources Research, 2013, 49, 5009-5020.	1.7	42
48	Methods for assessing stormwater management at archaeological sites: Copan Ruins case study. Journal of Archaeological Science, 2012, 39, 2637-2642.	1.2	4
49	Bioretention Column Study of Bacteria Community Response to Saltâ€Enriched Artificial Stormwater. Journal of Environmental Quality, 2012, 41, 1951-1959.	1.0	19
50	Meander hydrodynamics initiated by river restoration deflectors. Hydrological Processes, 2012, 26, 3378-3392.	1.1	20
51	Comment on †Munz M, Krause S, Tecklenburg C, Binley A. Reducing monitoring gaps at the aquifer†river interface by modelling groundwater†surfacewater exchange flow patterns. Hydrological Processes. DOI: 10.1002/hyp.8080†M. Hydrological Processes, 2012, 26, 1586-1588.	1.1	9
52	Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models. Water Resources Research, $2011,47,.$	1.7	45
53	Hyporheic flow path response to hydraulic jumps at river steps: Hydrostatic model simulations. Water Resources Research, 2011, 47, .	1.7	20
54	Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring. Hydrology and Earth System Sciences, 2011, 15, 2119-2126.	1.9	6

#	Article	IF	CITATIONS
55	iTree-Hydro: Snow Hydrology Update For The Urban Forest Hydrology Model1. Journal of the American Water Resources Association, 2011, 47, 1211-1218.	1.0	15
56	Seasonal variation in cascadeâ€driven hyporheic exchange, northern Honduras. Hydrological Processes, 2011, 25, 1630-1646.	1.1	28
57	Envisioning ecological engineering education: An international survey of the educational and professional community. Ecological Engineering, 2010, 36, 570-578.	1.6	9
58	Improving Estimates of Simulated Runoff Quality and Quantity Using Road-Enhanced Land Cover Data. Journal of Hydrologic Engineering - ASCE, 2009, 14, 346-351.	0.8	13
59	Generating robust rainfall intensity–duration–frequency estimates with short-record satellite data. Journal of Hydrology, 2009, 371, 182-191.	2.3	70
60	Hyporheic exchange flow around constructed inâ€channel structures and implications for restoration design. Hydrological Processes, 2009, 23, 1158-1168.	1.1	87
61	Ancient eco-technology of qanats for engineering a sustainable water supply in the Mediterranean Island of Cyprus. Environmental Geology, 2009, 57, 249-257.	1.2	4
62	Implications of bioretention basin spatial arrangements on stormwater recharge and groundwater mounding. Ecological Engineering, 2009, 35, 670-677.	1.6	92
63	Naturalizing urban watershed hydrology to mitigate urban heatâ€island effects. Hydrological Processes, 2008, 22, 461-463.	1.1	9
64	Mechanistic Simulation of Tree Effects in an Urban Water Balance Model ¹ . Journal of the American Water Resources Association, 2008, 44, 75-85.	1.0	139
65	Estimating recharge rates for qanat-based water supply in northern Cyprus: a case study using remotely sensed and in-situ data. Urban Water Journal, 2008, 5, 161-171.	1.0	7
66	Adding Radar Rainfall and Calibration to the TR-20 Watershed Model to Improve Dam Removal Flood Analysis. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 314-317.	1.3	3
67	Estimation of Channel Bankfull Occurrence from Instantaneous Discharge Data. Journal of Hydrologic Engineering - ASCE, 2007, 12, 524-531.	0.8	27
68	The error and bias of supplementing a short, arid climate, rainfall record with regional vs. global frequency analysis. Journal of Hydrology, 2007, 334, 174-182.	2.3	7
69	Monitoring soil moisture and water table height with a low-cost data logger. Computers and Geosciences, 2006, 32, 135-140.	2.0	13
70	Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine. Hydrological Processes, 2006, 20, 3825-3834.	1.1	19
71	Increasing Stormwater Outfall Duration, Magnitude, and Volume through Combined Sewer Separation. Journal of Hydrologic Engineering - ASCE, 2006, 11, 472-481.	0.8	7
72	An object oriented approach to the description and simulation of watershed scale hydrologic processes. Computers and Geosciences, 2005, 31, 425-435.	2.0	21

#	Article	IF	CITATIONS
73	Robustness of pollutant loading estimators for sample size reduction in a suburban watershed. International Journal of River Basin Management, 2005, 3, 53-66.	1.5	6
74	A flexible modeling package for topographically based watershed hydrology. Journal of Hydrology, 2005, 314, 78-91.	2.3	23
75	Assessing Geomorphic, Ecological and Social Benefits of Bankfull Flow in Onondaga Creeks Urban Channel. , 2005 , , 1 .		0
76	Storm water management for society and nature via service learning, ecological engineering and ecohydrology. International Journal of Water Resources Development, 2004, 20, 445-462.	1.2	14
77	Hydrograph sensitivity to estimates of map impervious cover: a WinHSPF BASINS case study. Hydrological Processes, 2003, 17, 1019-1034.	1.1	18
78	WATERSHED WEIGHTING OF EXPORT COEFFICIENTS TO MAP CRITICAL PHOSPHOROUS LOADING AREAS. Journal of the American Water Resources Association, 2003, 39, 165-181.	1.0	44
79	Maximizing spatial congruence of observed and DEM-delineated overland flow networks. International Journal of Geographical Information Science, 2003, 17, 699-713.	2.2	37
80	Policy to coordinate watershed hydrological, social, and ecological needs: The HELP initiative. Water Resources Monograph, 2003, , 395-411.	1.0	0
81	Community participation and spatially distributed management in New York City's water supply. Water Resources Monograph, 2003, , 369-394.	1.0	0
82	U.N. hydrology initiative pairs societal needs with science. Eos, 2002, 83, 592.	0.1	1
83	BASINS toolkit for hydrological monitoring, modelling, and assessment. Hydrological Processes, 2002, 16, 1331-1335.	1.1	5
84	Scientist and Policy-Maker Response Types and Times in Suburban Watersheds. Environmental Management, 2002, 29, 729-735.	1.2	6
85	Representing elevation uncertainty in runoff modelling and flowpath mapping. Hydrological Processes, 2001, 15, 2223-2236.	1.1	34
86	Satellite-derived digital elevation model accuracy: hydrogeomorphological analysis requirements. Hydrological Processes, 2000, 14, 1-20.	1.1	32
87	Satellite-derived digital elevation model accuracy: hydrological modelling requirements. Hydrological Processes, 2000, 14, 177-194.	1.1	15
88	Correction of errors in SPOT-Derived DEM's using GTOPO30 data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 1234-1241.	2.7	3
89	Distributed Watershed Modeling of Design Storms to Identify Nonpoint Source Loading Areas. Journal of Environmental Quality, 1999, 28, 388-397.	1.0	13
90	A DECISION SUPPORT SYSTEM FOR WATER QUALITY DATA AUGMENTATION: A CASE STUDY1. Journal of the American Water Resources Association, 1999, 35, 363-377.	1.0	2

ARTICLE IF CITATIONS

91 Manipulating HSPF to Simulate Pollutant Transport in Suburban Systems., 0,,... o