
Oliver H Wittekindt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3300876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. American Journal of Physiology - Cell Physiology, 2022, 322, C591-C604.	4.6	2
2	TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Archiv European Journal of Physiology, 2021, 473, 287-311.	2.8	14
3	A PCB-Based 24-Ch. MEA-EIS Allowing Fast Measurement of TEER. IEEE Sensors Journal, 2021, 21, 13048-13059.	4.7	4
4	Retinoic acid signalling adjusts tight junction permeability in response to air-liquid interface conditions. Cellular Signalling, 2020, 65, 109421.	3.6	14
5	IL-13 Impairs Tight Junctions in Airway Epithelia. International Journal of Molecular Sciences, 2019, 20, 3222.	4.1	26
6	CRACking the Beat of Cilia: Calcium Rocks. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 410-411.	2.9	2
7	An Evaluation Study of Various Excitation Signals for Electrical Impedance Spectroscopy. , 2019, , .		9
8	Pharmacological cholesterol depletion disturbs ciliogenesis and ciliary function in developing zebrafish. Communications Biology, 2019, 2, 31.	4.4	31
9	Aquaporins in the lung. Pflugers Archiv European Journal of Physiology, 2019, 471, 519-532.	2.8	50
10	Inflammation-induced upregulation of P2X ₄ expression augments mucin secretion in airway epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L58-L70.	2.9	21
11	Tight junctions in pulmonary epithelia during lung inflammation. Pflugers Archiv European Journal of Physiology, 2017, 469, 135-147.	2.8	154
12	Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 372-382.	2.9	16
13	Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 707-717.	2.9	51
14	Amiloride-sensitive fluid resorption in NCI-H441 lung epithelia depends on an apical Clâ^' conductance. Physiological Reports, 2014, 2, e00201.	1.7	14
15	Deuterium Oxide Dilution: A Novel Method to Study Apical Water Layers and Transepithelial Water Transport. Analytical Chemistry, 2013, 85, 4247-4250.	6.5	22
16	Actin coating and compression of fused secretory vesicles are essential for surfactant secretion: a role for Rho, formins and myosin II. Journal of Cell Science, 2012, 125, 2765-74.	2.0	63
17	Combined Atomic Force Microscopy–Fluorescence Microscopy: Analyzing Exocytosis in Alveolar Type II Cells. Analytical Chemistry, 2012, 84, 5716-5722.	6.5	28
18	Molecular basis of early epithelial response to streptococcal exotoxin: role of STIM1 and Orai1 proteins. Cellular Microbiology, 2012, 14, 299-315.	2.1	16

OLIVER H WITTEKINDT

#	Article	IF	CITATIONS
19	Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells. Analytical and Bioanalytical Chemistry, 2011, 399, 2369-2378.	3.7	20
20	Plasma Membrane Trafficking in Alveolar Type II Cells. Cellular Physiology and Biochemistry, 2010, 25, 081-090.	1.6	8
21	2-APB and Capsazepine-induced Ca ²⁺ Influx Stimulates Clathrin-dependent Endocytosis in Alveolar Epithelial Cells. Cellular Physiology and Biochemistry, 2010, 25, 091-102.	1.6	13
22	The human Ca2+-activated K+ channel, IK, can be blocked by the tricyclic antihistamine promethazine. Neuropharmacology, 2006, 50, 458-467.	4.1	10
23	An Apamin- and Scyllatoxin-Insensitive Isoform of the Human SK3 Channel. Molecular Pharmacology, 2004, 65, 788-801.	2.3	46