Qiye Zheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/3300503/qiye-zheng-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

50	11,073	35	50
papers	citations	h-index	g-index
50	12,515	10.7	6.46
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
50	Lower limit to the thermal conductivity of disordered crystals. <i>Physical Review B</i> , 1992 , 46, 6131-6140	3.3	1596
49	Thermal conductivity measurement from 30 to 750 K: the 3Imethod. <i>Review of Scientific Instruments</i> , 1990 , 61, 802-808	1.7	1344
48	Nanoscale thermal transport. II. 2003\(\mathbb{Q}\)012. Applied Physics Reviews, 2014 , 1, 011305	17.3	1050
47	Analysis of heat flow in layered structures for time-domain thermoreflectance. <i>Review of Scientific Instruments</i> , 2004 , 75, 5119-5122	1.7	987
46	Ultralow thermal conductivity in disordered, layered WSe2 crystals. <i>Science</i> , 2007 , 315, 351-3	33.3	646
45	Thermal conductivity of amorphous solids above the plateau. <i>Physical Review B</i> , 1987 , 35, 4067-4073	3.3	587
44	Thermal conductivity of Si G e superlattices. <i>Applied Physics Letters</i> , 1997 , 70, 2957-2959	3.4	579
43	Effects of chemical bonding on heat transport across interfaces. <i>Nature Materials</i> , 2012 , 11, 502-6	27	458
42	Thermal conductance of epitaxial interfaces. <i>Physical Review B</i> , 2003 , 67,	3.3	355
41	Ultrafast flash thermal conductance of molecular chains. <i>Science</i> , 2007 , 317, 787-90	33.3	352
40	Heat conduction across monolayer and few-layer graphenes. <i>Nano Letters</i> , 2010 , 10, 4363-8	11.5	312
39	Thermal conductivity of thin films: Measurements and understanding. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1989 , 7, 1259-1266	2.9	245
38	High thermal conductivity in cubic boron arsenide crystals. <i>Science</i> , 2018 , 361, 579-581	33.3	220
37	Thermal Conductivity of High-Modulus Polymer Fibers. <i>Macromolecules</i> , 2013 , 46, 4937-4943	5.5	180
36	Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus. <i>Advanced Materials</i> , 2015 , 27, 8017-7	2224	178
35	Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. <i>Journal of Applied Physics</i> , 2014 , 116, 233107	2.5	173
34	Thermal Conductivity, Heat Capacity, and Elastic Constants of Water-Soluble Polymers and Polymer Blends. <i>Macromolecules</i> , 2016 , 49, 972-978	5.5	156

(2019-2008)

33	Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters. <i>Review of Scientific Instruments</i> , 2008 , 79, 114901	1.7	152
32	Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. <i>Nature Materials</i> , 2004 , 3, 298-301	27	132
31	Structural and electronic properties of bilayer and trilayer graphdiyne. <i>Nanoscale</i> , 2012 , 4, 3990-6	7.7	114
30	Elastic properties of several amorphous solids and disordered crystals below 100 K. <i>Zeitschrift F</i> II <i>Physik B-Condensed Matter</i> , 1996 , 101, 235-245		106
29	Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. <i>Nature Communications</i> , 2016 , 7, 13211	17.4	101
28	Electrochemically tunable thermal conductivity of lithium cobalt oxide. <i>Nature Communications</i> , 2014 , 5, 4035	17.4	92
27	Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. <i>Science</i> , 2020 , 367, 555-559	33.3	90
26	High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. <i>Nature Communications</i> , 2018 , 9, 2578	17.4	85
25	Structural, Electronic, and Optical Properties of Bulk Graphdiyne. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13072-13079	3.8	84
24	Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties. <i>Optics Express</i> , 2012 , 20, 28829-38	3.3	81
23	Flexible and Stretchable 3DS ensors for Thermal Characterization of Human Skin. <i>Advanced Functional Materials</i> , 2017 , 27, 1701282	15.6	71
22	Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes. <i>Advanced Materials</i> , 2016 , 28, 7696-703	24	68
21	Electric-Field-Induced Energy Gap in Few-Layer Graphene. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 9458-9464	3.8	66
20	Invited article: micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. <i>Review of Scientific Instruments</i> , 2013 , 84, 071301	1.7	60
19	High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes. <i>Nano Letters</i> , 2016 , 16, 4501-7	11.5	58
18	High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide. <i>Advanced Functional Materials</i> , 2018 , 28, 1805116	15.6	51
17	Torsional oscillator for internal friction data at 100 kHz. Review of Scientific Instruments, 1989, 60, 2706-	2:7 / 10	43
16	Thermal conductivity of GaN, GaN71, and SiC from 150 K to 850 K. <i>Physical Review Materials</i> , 2019 , 3,	3.2	43

15	Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 151, 119331	4.9	30
14	Phonon and electron contributions to the thermal conductivity of VNx epitaxial layers. <i>Physical Review Materials</i> , 2017 , 1,	3.2	28
13	Thermal Conductivity of Graphite Thin Films Grown by Low Temperature Chemical Vapor Deposition on Ni (111). <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600234	4.6	24
12	Thermal transport in layer-by-layer assembled polycrystalline graphene films. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	21
11	High Contrast Thermal Conductivity Change in Nill Heusler Alloys near Room Temperature. <i>Advanced Engineering Materials</i> , 2019 , 21, 1801342	3.5	12
10	An InGaN-Based Solar Cell Including Dual InGaN/GaN Multiple Quantum Wells. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 2117-2120	2.2	8
9	Good Solid-State Electrolytes Have Low, Glass-Like Thermal Conductivity. <i>Small</i> , 2021 , 17, e2101693	11	8
8	Properties of bulk scandium nitride crystals grown by physical vapor transport. <i>Applied Physics Letters</i> , 2020 , 116, 132103	3.4	6
7	Advances in thermal conductivity for energy applications: a review. <i>Progress in Energy</i> , 2021 , 3, 012002	7.7	6
6	Parametric study of solid-solid translucent phase change materials in building windows. <i>Applied Energy</i> , 2021 , 301, 117467	10.7	6
5	Lithium-Ion Batteries: Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes (Adv. Mater. 35/2016). <i>Advanced Materials</i> , 2016 , 28, 7695-7695	24	3
4	Thermal transport through the magnetic martensitic transition in MnxMGe(M=Co,Ni). <i>Physical Review Materials</i> , 2018 , 2,	3.2	3
3	Dendritic nanostructured FeS-based high stability and capacity Li-ion cathodes <i>RSC Advances</i> , 2018 , 8, 38745-38750	3.7	2
2	Battery absorbs heat during charging uncovered by ultra-sensitive thermometry. <i>Journal of Power Sources</i> , 2022 , 518, 230762	8.9	1
1	Structured illumination with thermal imaging (SI-TI): A dynamically reconfigurable metrology for parallelized thermal transport characterization. <i>Applied Physics Reviews</i> , 2022 , 9, 021411	17.3	О