Ming Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3300280/publications.pdf

Version: 2024-02-01

35 9,636 24 32 papers citations h-index g-index

41 41 41 18106
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Development of a standard of care for patients with valosin-containing protein associated multisystem proteinopathy. Orphanet Journal of Rare Diseases, 2022, 17, 23.	2.7	19
2	Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nature Communications, 2022, 13, 1582.	12.8	20
3	Engineering the Composition and Fate of Wild Populations with Gene Drive. Annual Review of Entomology, 2021, 66, 407-434.	11.8	61
4	Generation, Analyzing and in-vivo Drug Treatment of Drosophila Models with IBMPFD. Bio-protocol, 2020, 10, e3621.	0.4	0
5	Mitochondrial Respiratory Measurements in Patient-derived Fibroblasts. Bio-protocol, 2019, 9, e3446.	0.4	O
6	Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology, 2018, 112, 63-74.	2.1	13
7	Atg1-mediated autophagy suppresses tissue degeneration in <i>pink1/parkin</i> mutants by promoting mitochondrial fission in <i>Drosophila</i> Molecular Biology of the Cell, 2018, 29, 3082-3092.	2.1	33
8	Mitochondrial dynamics regulates Drosophila intestinal stem cell differentiation. Cell Death Discovery, 2018, 4, 17.	4.7	28
9	Developmental analysis of the dopamineâ€containing neurons of the <i>Drosophila</i> brain. Journal of Comparative Neurology, 2017, 525, 363-379.	1.6	53
10	Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants. ELife, 2017, 6, .	6.0	63
11	Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nature Communications, 2016, 7, 13100.	12.8	79
12	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
13	Novel alleles of the <i>Drosophila LRRK2</i> homolog reveal a crucial role in endolysosomal functions and autophagy <i>in vivo</i> DMM Disease Models and Mechanisms, 2014, 7, 1351-63.	2.4	57
14	Multiplying Messages LRRK beneath Parkinson Disease. Cell, 2014, 157, 291-293.	28.9	0
15	MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. ELife, 2014, 3, e01958.	6.0	235
16	<i>X11/Mint</i> Genes Control Polarized Localization of Axonal Membrane Proteins <i>in Vivo</i> Journal of Neuroscience, 2013, 33, 8575-8586.	3.6	21
17	Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Human Molecular Genetics, 2012, 21, 1350-1363.	2.9	194
18	Molecular Insights into Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 125-188.	1.7	83

#	Article	IF	Citations
19	Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009944-a009944.	6.2	76
20	What have we learned from Drosophila models of Parkinson's disease?. Progress in Brain Research, 2010, 184, 2-16.	1.4	29
21	Protein degradation in Parkinson disease revisited: it's complex. Journal of Clinical Investigation, 2009, 119, 442-444.	8.2	21
22	The Parkinson's disease genes <i>pink1</i> and <i>parkin</i> promote mitochondrial fission and/or inhibit fusion in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14503-14508.	7.1	624
23	ubiquilin antagonizes presenilin and promotes neurodegeneration in Drosophila. Human Molecular Genetics, 2008, 17, 293-302.	2.9	41
24	Loss-of-Function Analysis Suggests That <i>Omi/HtrA2</i> Is Not an Essential Component of the <i>pink1/parkin</i> Pathway <i>In Vivo</i> Journal of Neuroscience, 2008, 28, 14500-14510.	3.6	77
25	Role of X11 and ubiquilin as In Vivo Regulators of the Amyloid Precursor Protein in Drosophila. PLoS ONE, 2008, 3, e2495.	2.5	20
26	Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Current Opinion in Neurobiology, 2007, 17, 331-337.	4.2	251
27	A Synthetic Maternal-Effect Selfish Genetic Element Drives Population Replacement in <i>Drosophila < /i>. Science, 2007, 316, 597-600.</i>	12.6	188
28	Caspase-Dependent Cell Death inDrosophila. Annual Review of Cell and Developmental Biology, 2006, 22, 623-650.	9.4	179
29	Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441, 1162-1166.	27.8	1,574
30	Identifying MicroRNA Regulators of Cell Death in <i>Drosophila</i> ., 2006, 342, 229-240.		9
31	The genetics of cell death: approaches, insights and opportunities in Drosophila. Nature Reviews Genetics, 2004, 5, 911-922.	16.3	81
32	Coupling Cell Growth, Proliferation, and Death. Developmental Cell, 2003, 5, 361-363.	7.0	43
33	A reporter for amyloid precursor protein Â-secretase activity in Drosophila. Human Molecular Genetics, 2003, 12, 2669-2678.	2.9	25
34	Control of Daughter Cell Fates during Asymmetric Division: Interaction of Numb and Notch. Neuron, 1996, 17, 27-41.	8.1	620
35	tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the drosophila PNS. Neuron, 1995, 14, 913-925.	8.1	109