
Vadim Sh Sufiiarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3300274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials and Design, 2017, 114, 441-449.	3.3	393
2	Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Materials and Design, 2017, 131, 12-22.	3.3	263
3	Microstructure and mechanical properties of additive manufactured copper alloy. Materials Letters, 2016, 179, 38-41.	1.3	154
4	The Effect of Layer Thickness at Selective Laser Melting. Procedia Engineering, 2017, 174, 126-134.	1.2	132
5	Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing. Journal of Alloys and Compounds, 2018, 763, 436-445.	2.8	81
6	In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting. Journal of Alloys and Compounds, 2017, 704, 434-442.	2.8	74
7	Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment. Key Engineering Materials, 0, 651-653, 665-670.	0.4	57
8	Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by SLM. Key Engineering Materials, 0, 651-653, 677-682.	0.4	56
9	Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials. Russian Journal of Non-Ferrous Metals, 2017, 58, 389-395.	0.2	51
10	Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics, 2019, 112, 106554.	1.8	49
11	Producing hip implants of titanium alloys by additive manufacturing. International Journal of Bioprinting, 2016, 2, .	1.7	45
12	LCD-SLA 3D printing of BaTiO3 piezoelectric ceramics. Ceramics International, 2021, 47, 30358-30366.	2.3	43
13	Use of Additive Techniques for Preparing Individual Components of Titanium Alloy Joint Endoprostheses. Bio-Medical Engineering, 2016, 50, 202-205.	0.3	34
14	Metal Powder Additive Manufacturing. , 0, , .		33
15	Synthesis of titanium orthorhombic alloy using binder jetting additive manufacturing. Materials Letters, 2019, 243, 88-91.	1.3	32
16	Creep and Thermomechanical Fatigue of Functionally Graded Inconel 718 Produced by Additive Manufacturing. Minerals, Metals and Materials Series, 2018, , 85-97.	0.3	26
17	Selective laser melting of heat-resistant Ni-based alloy. Non-ferrous Metals, 2015, , 32-35.	0.4	25
18	A laser ultrasonic technique for studying the properties of products manufactured by additive technologies. Russian Journal of Nondestructive Testing, 2016, 52, 303-309.	0.3	23

#	Article	IF	CITATIONS
19	Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders. Additive Manufacturing, 2020, 34, 101374.	1.7	22
20	Selective laser melting of titanium alloy and manufacturing of gas-turbine engine part blanks. Tsvetnye Metally, 2015, , 76-80.	0.1	21
21	Control of structure formation in selective laser melting process. Tsvetnye Metally, 2018, , 68-74.	0.1	21
22	The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization. IOP Conference Series: Materials Science and Engineering, 2017, 192, 012009.	0.3	20
23	Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma. Russian Journal of Non-Ferrous Metals, 2018, 59, 671-676.	0.2	20
24	Structure and Properties of Barium Titanate Lead-Free Piezoceramic Manufactured by Binder Jetting Process. Materials, 2021, 14, 4419.	1.3	19
25	Tailoring the Properties in Functionally Graded Alloy Inconel 718 Using Additive Technologies. Metal Science and Heat Treatment, 2019, 60, 701-709.	0.2	17
26	Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings, 2020, 30, 592-595.	0.9	14
27	Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting, hot isostatic pressing and heat treatment. Tsvetnye Metally, 2017, , 77-82.	0.1	13
28	Selective Laser Melting of the Inconel 718 Nickel Superalloy. Applied Mechanics and Materials, 0, 698, 333-338.	0.2	12
29	Development of SLM quality system for gas turbines engines parts production. IOP Conference Series: Materials Science and Engineering, 0, 441, 012024.	0.3	12
30	Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting. Tsvetnye Metally, 2016, , 81-86.	0.1	12
31	The investigation of microstructure and mechanical properties of tool steel produced by selective laser melting technology. IOP Conference Series: Materials Science and Engineering, 0, 441, 012003.	0.3	11
32	Designing of the digital casting process for the gas turbine engine blades with a single-crystal structure. IOP Conference Series: Materials Science and Engineering, 0, 441, 012058.	0.3	11
33	Structure and Properties of Ti/Ti64 Graded Material Manufactured by Laser Powder Bed Fusion. Materials, 2021, 14, 6140.	1.3	11
34	In situ synthesized Ti2AlNb-based composites produced by selective laser melting by addition of SiC-whiskers. Materials Letters, 2021, 297, 129956.	1.3	10
35	A novel approaches to components design additive manufacturing process. IOP Conference Series: Earth and Environmental Science, 0, 194, 022026.	0.2	9
36	Selective laser melting of Inconel 718 under high laser power. Materials Today: Proceedings, 2020, 30, 784-788.	0.9	9

VADIM SH SUFIIAROV

#	Article	IF	CITATIONS
37	Numerical simulation of the inelastic behavior of a structurally graded material. Letters on Materials, 2019, 9, 97-102.	0.2	7
38	Selective Laser Melting of the Intermetallic Titanium Alloy. Russian Journal of Non-Ferrous Metals, 2019, 60, 186-193.	0.2	6
39	Effect of Heat Treatment Modes on the Structure and Properties of Alloy VT6 After Selective Laser Melting. Metal Science and Heat Treatment, 2019, 60, 745-748.	0.2	6
40	Investigation of accuracy, microstructure and properties of additive manufactured lattice structures. Materials Today: Proceedings, 2020, 30, 572-577.	0.9	6
41	Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures. Materials, 2021, 14, 4946.	1.3	6
42	A Study of Structural Features of a Gradient Material from a Heat-Resistant Nickel Alloy Produced by Laser Cladding. Metal Science and Heat Treatment, 2019, 60, 739-744.	0.2	5
43	Design and mechanical properties simulation of graded lattice structures for additive manufacturing endoprostheses. Mechanics of Advanced Materials and Structures, 0, , 1-7.	1.5	5
44	Development of the titanium meshes by selective laser melting and chemical etching for using as medical implants. Materials Today: Proceedings, 2020, 30, 746-751.	0.9	5
45	Structural analysis of an endoprosthesis designed with graded density lattice structures. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3420.	1.0	5
46	Structure, Mechanical and Magnetic Properties of Selective Laser Melted Fe-Si-B Alloy. Materials, 2022, 15, 4121.	1.3	5
47	A Review on Additive Manufacturing of Functional Gradient Piezoceramic. Micromachines, 2022, 13, 1129.	1.4	5
48	Multi-criteria planning model of engines parts additive manufacturing. MATEC Web of Conferences, 2018, 224, 01119.	0.1	4
49	Formation of Structure in Titanium Lightweight Structures Made by Selective Laser Melting. Materials Science Forum, 0, 946, 990-995.	0.3	4
50	Spheroidization of Fe-Based Powders in Plasma Jet of DC Arc Plasma Torch and Application of These Powders in Selective Laser Melting. Inorganic Materials: Applied Research, 2020, 11, 579-585.	0.1	4
51	Investigation of Ti-6Al-4V Alloy <i>In Situ</i> Manufactured Using Selective Laser Melting from Elemental Powder Mixture. Solid State Phenomena, 0, 299, 646-651.	0.3	3
52	Computer Modelling of Uniaxial Tension of Functionally Gradient Material Produced by Additive Manufacturing. Technical Physics, 2021, 66, 23-27.	0.2	3
53	Selective laser melting of Ti – 6 Al – 4 V for gas turbine components manufacturing. Non-ferrous Metals, 2015, , 21-24.	0.4	3
54	Additive technology for manufacturing structurally-graded materials from the Inconel 625 nickel-based superalloy. IOP Conference Series: Earth and Environmental Science, 2018, 194, 042013.	0.2	2

VADIM SH SUFIIAROV

#	Article	IF	CITATIONS
55	Tailoring microstructure and properties of graded Ti-22Al-25Nb/SiC and Ti-22Al-25Nb/Ti-6Al-4V alloys by in-situ synthesis during selective laser melting. Materials Today: Proceedings, 2020, 30, 672-678.	0.9	2
56	Reaction sintering of metal-ceramic AlSi-Al2O3 composites manufactured by binder jetting additive manufacturing process. , 2020, , .		2
57	Effect of heat treatment on microstructure and properties of Ti-22Al-25Nb alloy fabricated by Selective Laser Melting. , 2019, , .		1
58	Modeling the mechanical properties of lattice structures made by selective laser melting. Letters on Materials, 2020, 10, 123-128.	0.2	1
59	X-Ray CT Investigation of Graded Ti-Ti64 Material Produced by Selective Laser Melting. Key Engineering Materials, 2019, 822, 542-548.	0.4	0
60	Microstructure and Mechanical Properties of Light Cellular Constructions Made of a VT6 Alloy by Selective Laser Melting. Russian Metallurgy (Metally), 2019, 2019, 1448-1451.	0.1	0
61	Investigation of Functional Graded Steel Parts Produced by Selective Laser Melting. Key Engineering Materials, 0, 822, 563-568.	0.4	0
62	Properties of copper-based cast microwires, obtained by ultrafast liquid quenching. Tsvetnye Metally, 2015, , 84-88.	0.1	0
63	INVESTIGATION OF MICROSTRUCRE AND MECHANICAL PROPERTIES OF VT6 TITANIUM ALLOY LATTICE STRUCTURES PRODUCED BY SELECTIVE LASER MELTING. Tekhnologiya Metallov, 2019, .	0.1	0
64	DEVELOPMENT OF SELECTIVE LASER MELTING PARAMETERS FOR EPITAXIAL CRYSTAL GROWTH. , 2019, , .		0
65	FUNCTIONALLY GRADED LATTICE STRUCTURES MADE FROM TITANIUM ALLOY BY SELECTIVE LASER MELTING. , 2019, , .		О