Andrea Visconti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330008/publications.pdf

Version: 2024-02-01

1163117 996975 34 266 8 15 citations h-index g-index papers 37 37 37 177 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimizing the Key-Pair Generation Phase of McEliece Cryptosystem. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 111-122.	0.7	1
2	Public Key Compression and Fast Polynomial Multiplication for NTRU using the Corrected Hybridized NTT-Karatsuba Method. , 2022, , .		0
3	New Records of Pre-image Search of Reduced SHA-1 Using SAT Solvers. Advances in Intelligent Systems and Computing, 2022, , 141-151.	0.6	O
4	Why you cannot even hope to use Ore algebras in Cryptography. Applicable Algebra in Engineering, Communications and Computing, 2021, 32, 229-244.	0.5	1
5	Effects of central tendency measures on term weighting in textual information retrieval. Soft Computing, 2021, 25, 7341-7378.	3.6	3
6	Exploiting an HMAC-SHA-1 Optimization to Speed up PBKDF2. IEEE Transactions on Dependable and Secure Computing, 2020, 17, 775-781.	5.4	15
7	Polynomial multiplication over binary finite fields: new upper bounds. Journal of Cryptographic Engineering, 2020, 10, 197-210.	1.8	5
8	A Survey on Blockchain Consensus with a Performance Comparison of PoW, PoS and Pure PoS. Mathematics, 2020, 8, 1782.	2.2	62
9	Why you cannot even hope to use Gröbner bases in cryptography: an eternal golden braid of failures. Applicable Algebra in Engineering, Communications and Computing, 2020, 31, 235-252.	0.5	2
10	Sublime Experience: New Strategies for Measuring the Aesthetic Impact of the Sublime. , 2020, , 167-187.		0
11	Measuring Performances of a White-Box Approach in the IoT Context. Symmetry, 2019, 11, 1000.	2.2	4
12			
	Discovering varying patterns of Normal and interleaved ADLs in smart homes. Applied Intelligence, 2019, 49, 4175-4188.	5.3	9
13		5.3 2.5	9
13 14	2019, 49, 4175-4188. Examining PBKDF2 security marginâ€"Case study of LUKS. Journal of Information Security and		
	2019, 49, 4175-4188. Examining PBKDF2 security marginâ€"Case study of LUKS. Journal of Information Security and Applications, 2019, 46, 296-306. White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family. Lecture Notes on Data	2.5	8
14	2019, 49, 4175-4188. Examining PBKDF2 security marginâ€"Case study of LUKS. Journal of Information Security and Applications, 2019, 46, 296-306. White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family. Lecture Notes on Data Engineering and Communications Technologies, 2019, , 153-166. Understanding Optimizations and Measuring Performances of PBKDF2. Lecture Notes on Data	2.5	1
14 15	Examining PBKDF2 security marginâ€"Case study of LUKS. Journal of Information Security and Applications, 2019, 46, 296-306. White-Box Cryptography: A Time-Security Trade-Off for the SPNbox Family. Lecture Notes on Data Engineering and Communications Technologies, 2019, , 153-166. Understanding Optimizations and Measuring Performances of PBKDF2. Lecture Notes on Data Engineering and Communications Technologies, 2019, , 101-114. Elderly Action Prediction and Anomalous Activity Detection in Smart Homes through Profiling	2.5 0.7 0.7	8 1 4

#	Article	IF	Citations
19	The Dangers of Rooting: Data Leakage Detection in Android Applications. Mobile Information Systems, 2018, 2018, 1-9.	0.6	8
20	Exploiting a Bad User Practice to Retrieve Data Leakage on Android Password Managers. Advances in Intelligent Systems and Computing, 2018, , 952-958.	0.6	0
21	On the Weaknesses of PBKDF2. Lecture Notes in Computer Science, 2015, , 119-126.	1.3	9
22	What Users Should Know About Full Disk Encryption Based on LUKS. Lecture Notes in Computer Science, 2015, , 225-237.	1.3	12
23	Artificial immune system based on interval type-2 fuzzy set paradigm. Applied Soft Computing Journal, 2011, 11, 4055-4063.	7.2	20
24	Concave type-2 fuzzy sets: properties and operations. Soft Computing, 2010, 14, 749-756.	3.6	29
25	Secure electronic bills of lading: blind counts andÂdigital signatures. Electronic Commerce Research, 2010, 10, 363-388.	5.0	8
26	Operations on type-2 fuzzy sets based on the set of pseudo-highest intersection points of convex fuzzy sets. , 2010, , .		10
27	On the calculation of extended max and min operations between convex fuzzy sets of the real line. Fuzzy Sets and Systems, 2009, 160, 3103-3114.	2.7	29
28	Distributed-interval type-2 fuzzy set based recognition algorithm for IDS. , 2008, , .		0
29	Intrusion Detection via Artificial Immune System: a Performance-based Approach. International Federation for Information Processing, 2008, , 125-135.	0.4	2
30	A Type-2 Fuzzy Set Recognition Algorithm for Artificial Immune Systems. Lecture Notes in Computer Science, 2008, , 491-498.	1.3	1
31	email granulation based on distributed-interval type-2 fuzzy set methodologies. , 2007, , .		2
32	Augmented Interval Type-2 Fuzzy Set Methodologies for Email Granulation. , 2007, , .		2
33	Spam Filtering Model Based on Interval Type-2 Fuzzy Set Paradigm. , 2007, , .		0
34	email granulation based on distributed-interval type-2 fuzzy set methodologies. , 2007, , .		0