
## Wang Wei

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3299545/publications.pdf Version: 2024-02-01



MANC MEL

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ionic liquids in transdermal drug delivery system: Current applications and future perspectives.<br>Chinese Chemical Letters, 2023, 34, 107631.                                                                                                                               | 9.0 | 7         |
| 2  | Effect of the combination of permeation enhancer and ion-pairs strategies on transdermal delivery of tofacitinib. International Journal of Pharmaceutics, 2022, 611, 121190.                                                                                                  | 5.2 | 7         |
| 3  | Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer. International Journal of Pharmaceutics, 2022, 612, 121377.                                                                                | 5.2 | 13        |
| 4  | A Systematic Quantitative Evaluation of Permeation Enhancement Window: Transdermal Permeation<br>Enhancing Dynamics Establishment and Molecular Mechanisms Characterization of Permeation<br>Enhancer. Journal of Pharmaceutical Sciences, 2022, , .                          | 3.3 | 2         |
| 5  | Transdermal Enhancement Strategy of Lappaconitine: Alteration of Keratin Configuration by<br>Counter-Ion. AAPS PharmSciTech, 2022, 23, 61.                                                                                                                                    | 3.3 | 1         |
| 6  | PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. International Journal of Pharmaceutics, 2022, 615, 121480.                                                                      | 5.2 | 7         |
| 7  | Roles of molecular interaction and mobility on loading capacity and release rate of drug-ionic liquid<br>in long-acting controlled release transdermal patch. Journal of Molecular Liquids, 2022, 352, 118752.                                                                | 4.9 | 12        |
| 8  | Alternative therapy of rheumatoid arthritis with a novel transdermal patch containing Siegesbeckiae<br>Herba extract. Journal of Ethnopharmacology, 2021, 265, 113294.                                                                                                        | 4.1 | 24        |
| 9  | Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug–Ionic Liquid<br>Strategy: Insight into the Role of Ionic Hydrogen Bonding. Molecular Pharmaceutics, 2021, 18, 1157-1166.                                                                     | 4.6 | 29        |
| 10 | Artesunate: A natural product-based immunomodulator involved in human complement. Biomedicine and Pharmacotherapy, 2021, 136, 111234.                                                                                                                                         | 5.6 | 5         |
| 11 | An investigation on percutaneous permeation of flurbiprofen enantiomers: The role of molecular<br>interaction between drug and skin components. International Journal of Pharmaceutics, 2021, 601,<br>120503.                                                                 | 5.2 | 20        |
| 12 | Development of long-acting rivastigmine drug-in-adhesive patch utilizing ion-pair strategy and<br>characterization of controlled release mechanism. European Journal of Pharmaceutical Sciences,<br>2021, 161, 105774.                                                        | 4.0 | 21        |
| 13 | Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal<br>Patch: Mechanism Study Based on FT-IR Spectroscopy, 13C NMR Spectroscopy, and Molecular<br>Simulation. AAPS PharmSciTech, 2021, 22, 198.                                     | 3.3 | 7         |
| 14 | The molecular design of drug-ionic liquids for transdermal drug delivery: Mechanistic study of counterions structure on complex formation and skin permeation. International Journal of Pharmaceutics, 2021, 602, 120560.                                                     | 5.2 | 27        |
| 15 | An investigation on the effect of drug physicochemical properties on the enhancement strength of enhancer: The role of drug-skin-enhancer interactions. International Journal of Pharmaceutics, 2021, 607, 120945.                                                            | 5.2 | 16        |
| 16 | A molecular mechanism investigation of the transdermal/topical absorption classification system on the basis of drug skin permeation and skin retention. International Journal of Pharmaceutics, 2021, 608, 121082.                                                           | 5.2 | 18        |
| 17 | Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti – aging component α – lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation. European Journal of Pharmaceutical Sciences, 2020, 141, 105042. | 4.0 | 24        |
| 18 | Probing the Role of Ion-Pair Strategy in Controlling Dexmedetomidine Penetrate Through<br>Drug-in-Adhesive Patch: Mechanistic Insights Based on Release and Percutaneous Absorption Process.<br>AAPS PharmSciTech, 2020, 21, 4.                                               | 3.3 | 12        |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanistic insights of the controlled release capacity of polar functional group in transdermal<br>drug delivery system: the relationship of hydrogen bonding strength and controlled release capacity.<br>Acta Pharmaceutica Sinica B, 2020, 10, 928-945.                     | 12.0 | 33        |
| 20 | The Improved Cargo Loading and Physical Stability of Ibuprofen Orodispersible Film: Molecular<br>Mechanism of Ion-Pair Complexes on Drug-Polymer Miscibility. Journal of Pharmaceutical Sciences,<br>2020, 109, 1356-1364.                                                      | 3.3  | 10        |
| 21 | Mechanistic Insights of the Critical Role of Hydrogen Donor in Controlling Drug Release From<br>Acrylate Adhesive. Journal of Pharmaceutical Sciences, 2020, 109, 1096-1104.                                                                                                    | 3.3  | 7         |
| 22 | Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film:<br>Effects of molecular mobility, electrical conductivity and intermolecular interactions. Journal of<br>Controlled Release, 2020, 317, 142-153.                                | 9.9  | 22        |
| 23 | Investigation on the effect of deep eutectic formation on drug-polymer miscibility and skin<br>permeability of rotigotine drug-in-adhesive patch. International Journal of Pharmaceutics, 2020, 574,<br>118852.                                                                 | 5.2  | 16        |
| 24 | Development and Evaluation of Cucurbitacin B Microemulsion: the Effect of Oil Phase and Aqueous<br>Phase on Drug Percutaneous Absorption Based on ATR-FTIR Spectroscopy and Molecular Modeling.<br>AAPS PharmSciTech, 2020, 21, 258.                                            | 3.3  | 3         |
| 25 | A systematic approach to determination of permeation enhancer action efficacy and sites: Molecular mechanism investigated by quantitative structureâ^activity relationship. Journal of Controlled Release, 2020, 322, 1-12.                                                     | 9.9  | 48        |
| 26 | Molecular mechanism of high capacity-high release transdermal drug delivery patch with carboxyl<br>acrylate polymer: Roles of ion-ion repulsion and hydrogen bond. International Journal of<br>Pharmaceutics, 2020, 585, 119376.                                                | 5.2  | 14        |
| 27 | Development of Tizanidine Drug-in-Adhesive Patch: Molecular Mechanism of Permeation Enhancer on<br>Regulating Miscibility and Drug Release by Affecting the Status of Ion-Pair in Polymer Matrix. Journal<br>of Pharmaceutical Sciences, 2020, 109, 2501-2511.                  | 3.3  | 2         |
| 28 | A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking<br>based on dynamic process and in vivo drug absorption. Asian Journal of Pharmaceutical Sciences, 2019,<br>14, 183-192.                                                     | 9.1  | 39        |
| 29 | Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. European Journal of Pharmaceutical Sciences, 2019, 138, 105009.       | 4.0  | 17        |
| 30 | Investigation of Controlled Release Molecular Mechanism of Oil Phase in Spilanthol Emulsion:<br>Development and In Vitro, In Vivo Characterization. AAPS PharmSciTech, 2019, 20, 227.                                                                                           | 3.3  | 4         |
| 31 | Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced<br>drug-drug intermolecular interaction by permeation enhancer on drug release of compound<br>transdermal patch. International Journal of Pharmaceutics, 2019, 572, 118800.            | 5.2  | 16        |
| 32 | Investigation of Effect of Isopropyl Palmitate on Drug Release from Transdermal Patch and Molecular<br>Dynamics Study. AAPS PharmSciTech, 2019, 20, 174.                                                                                                                        | 3.3  | 8         |
| 33 | Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. International Journal of Pharmaceutics, 2019, 572, 118831.                                                                                                       | 5.2  | 8         |
| 34 | The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: Quantitative determination of ionic interaction and molecular mechanism characterization. European Journal of Pharmaceutical Sciences, 2018, 115, 330-338. | 4.0  | 35        |
| 35 | Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic<br>insights based on intermolecular interaction and mobility of pressure sensitive adhesive. European<br>Journal of Pharmaceutical Sciences, 2018, 119, 102-111.             | 4.0  | 26        |
| 36 | Mechanistic insights of the controlled release properties of amide adhesive and hydroxyl adhesive.<br>European Journal of Pharmaceutical Sciences, 2018, 119, 13-21.                                                                                                            | 4.0  | 13        |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on<br>sustained release, taste masking and hygroscopicity reduction. International Journal of<br>Pharmaceutics, 2018, 545, 163-169.                                                         | 5.2  | 26        |
| 38 | Molecular mechanism of ion-pair releasing from acrylic pressure sensitive adhesive containing<br>carboxyl group: Roles of doubly ionic hydrogen bond in the controlled release process of bisoprolol<br>ion-pair. Journal of Controlled Release, 2018, 289, 146-157.                   | 9.9  | 39        |
| 39 | Investigation of molecular mobility of pressure-sensitive-adhesive in oxybutynin patch in vitro and in<br>vivo : Effect of sorbitan monooleate on drug release and patch mechanical property. European<br>Journal of Pharmaceutical Sciences, 2018, 122, 116-124.                      | 4.0  | 21        |
| 40 | Investigation of the enhancement effect of the natural transdermal permeation enhancers from<br>Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug,<br>enhancers and skin. European Journal of Pharmaceutical Sciences, 2018, 124, 105-113. | 4.0  | 17        |
| 41 | Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the<br>enhancement effect of Transcutol P and the assessment of pharmacodynamics. Drug Development and<br>Industrial Pharmacy, 2018, 44, 1642-1649.                                         | 2.0  | 16        |
| 42 | Time dependence of the enhancement effect of chemical enhancers: Molecular mechanisms of enhancing kinetics. Journal of Controlled Release, 2017, 248, 33-44.                                                                                                                          | 9.9  | 58        |
| 43 | A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo : The<br>roles of intermolecular interaction and adhesive mobility variation in drug controlled release.<br>Journal of Controlled Release, 2017, 252, 83-94.                           | 9.9  | 55        |
| 44 | Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator. Carbohydrate Polymers, 2017, 172, 197-204.                                                                                                      | 10.2 | 36        |
| 45 | An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin. International Journal of Pharmaceutics, 2017, 529, 161-167.                                                                                                           | 5.2  | 10        |
| 46 | Mechanism study on ion-pair complexes controlling skin permeability: Effect of ion-pair dissociation<br>in the viable epidermis on transdermal permeation of bisoprolol. International Journal of<br>Pharmaceutics, 2017, 532, 29-36.                                                  | 5.2  | 41        |
| 47 | Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes. European Journal of Pharmaceutical Sciences, 2017, 107, 138-147.                                                          | 4.0  | 30        |
| 48 | Investigate the control release effect of ion-pair in the development of escitalopram transdermal patch using FT-IR spectroscopy, molecular modeling and thermal analysis. International Journal of Pharmaceutics, 2017, 529, 391-400.                                                 | 5.2  | 25        |
| 49 | The effect of ion-pair formation combined with penetration enhancers on the skin permeation of loxoprofen. Drug Delivery, 2016, 23, 1-8.                                                                                                                                               | 5.7  | 19        |
| 50 | Regulating the Skin Permeation Rate of Escitalopram by Ion-pair Formation with Organic Acids. AAPS<br>PharmSciTech, 2016, 17, 1267-1273.                                                                                                                                               | 3.3  | 24        |
| 51 | Effect of drug physicochemical properties on drug release and their relationship with drug skin<br>permeation behaviors in hydroxyl pressure sensitive adhesive. European Journal of Pharmaceutical<br>Sciences, 2016, 93, 437-446.                                                    | 4.0  | 46        |
| 52 | Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. Acta Pharmaceutica Sinica B, 2016, 6, 623-628.                                                                                                   | 12.0 | 25        |
| 53 | Drug in adhesive patch of palonosetron: Effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation. International Journal of Pharmaceutics, 2016, 511, 1088-1097.                                                                                  | 5.2  | 39        |
| 54 | Development of a drug-in-adhesive patch combining ion pair and chemical enhancer strategy for transdermal delivery of zaltoprofen: pharmacokinetic, pharmacodynamic and <i>in vitro</i> / <i>in vivo</i> correlation evaluation. Drug Delivery, 2016, 23, 3461-3470.                   | 5.7  | 15        |

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic<br>insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. Journal of Controlled<br>Release, 2016, 227, 13-22.                                                                                          | 9.9 | 52        |
| 56 | Determination of tulobuterol in rat plasma using a liquid chromatography–tandem mass<br>spectrometry method and its application to a pharmacokinetic study of tulobuterol patch. Journal of<br>Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008, 108-114.                           | 2.3 | 3         |
| 57 | Lamellar Liquid Crystal Improves the Skin Retention of 3-O-Ethyl-Ascorbic Acid and Potassium<br>4-Methoxysalicylate In Vitro and In Vivo for Topical Preparation. AAPS PharmSciTech, 2016, 17, 767-777.                                                                                                                      | 3.3 | 18        |
| 58 | Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian Journal of Pharmaceutical Sciences, 2016, 11, 248-254.                                                                                                                                                            | 9.1 | 46        |
| 59 | <i>In vivo</i> pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles<br>based on <b>α</b> -tocopherol succinate-modified chitosan. Drug Delivery, 2016, 23, 2651-2660.                                                                                                                        | 5.7 | 18        |
| 60 | Mechanism of Ion-Pair Strategy in Modulating Skin Permeability of Zaltoprofen: Insight from<br>Molecular-Level Resolution Based on Molecular Modeling and Confocal Laser Scanning Microscopy.<br>Journal of Pharmaceutical Sciences, 2015, 104, 3395-3403.                                                                   | 3.3 | 25        |
| 61 | Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol<br>decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation.<br>Journal of Pharmacy and Pharmacology, 2015, 67, 1232-1239.                                                                  | 2.4 | 14        |
| 62 | Dual-directional regulation of drug permeating amount by combining the technique of ion-pair<br>complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol<br>in their compound patch through rabbit skin. European Journal of Pharmaceutics and<br>Biopharmaceutics, 2015, 91, 59-65. | 4.3 | 6         |
| 63 | The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol. European Journal of Pharmaceutical Sciences, 2015, 78, 140-150.                                                                                                                               | 4.0 | 26        |
| 64 | Drug in Adhesive Patch of Zolmitriptan: Formulation and In vitro /In vivo Correlation. AAPS<br>PharmSciTech, 2015, 16, 1245-1253.                                                                                                                                                                                            | 3.3 | 33        |
| 65 | Preparation of an oral thin film containing meclizine hydrochloride: In vitro and in vivo evaluation.<br>International Journal of Pharmaceutics, 2015, 496, 314-322.                                                                                                                                                         | 5.2 | 22        |
| 66 | Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. International Journal of Pharmaceutics, 2014, 460, 13-23.                                                                                                                                                                | 5.2 | 37        |
| 67 | Effect of Backing Films on the Transdermal Delivery of Donepezil from Patches. AAPS PharmSciTech, 2014, 15, 1569-1573.                                                                                                                                                                                                       | 3.3 | 8         |
| 68 | Saturated Long-Chain Esters of Isopulegol as Novel Permeation Enhancers for Transdermal Drug<br>Delivery. Pharmaceutical Research, 2014, 31, 1907-1918.                                                                                                                                                                      | 3.5 | 18        |
| 69 | Mechanistic investigation and reversible effect of 2-isopropyl-5-methylcyclohexyl heptanoate on the <i>in vitro </i> percutaneous absorption of indomethacin. Drug Delivery, 2014, 21, 26-33.                                                                                                                                | 5.7 | 13        |
| 70 | Effect of unsaturated menthol analogues on the in vitro penetration of 5-fluorouracil through rat skin. International Journal of Pharmaceutics, 2013, 443, 120-127.                                                                                                                                                          | 5.2 | 28        |
| 71 | Intra-articular drug delivery from an optimized topical patch containing teriflunomide and<br>lornoxicam for rheumatoid arthritis treatment: Does the topical patch really enhance a local<br>treatment?. Journal of Controlled Release, 2013, 169, 73-81.                                                                   | 9.9 | 49        |
| 72 | The Control of Skin-Permeating Rate of Bisoprolol by Ion-Pair Strategy for Long-Acting Transdermal<br>Patches. AAPS PharmSciTech, 2012, 13, 811-815.                                                                                                                                                                         | 3.3 | 27        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The relationship between hydrogen-bonded ion-pair stability and transdermal penetration of<br>lornoxicam with organic amines. European Journal of Pharmaceutical Sciences, 2012, 47, 325-330.   | 4.0 | 27        |
| 74 | Formulation and in vitro/in vivo correlation of a drugâ€inâ€adhesive transdermal patch containing<br>azasetron. Journal of Pharmaceutical Sciences, 2012, 101, 4540-4548.                       | 3.3 | 40        |
| 75 | Electroless silver plating on the PET fabrics modified with 3â€mercaptopropyltriethoxysilane. Journal of Applied Polymer Science, 2012, 124, 1912-1918.                                         | 2.6 | 40        |
| 76 | Nanonization of Itraconazole by High Pressure Homogenization: Stabilizer Optimization and Effect of Particle Size on Oral Absorption. Journal of Pharmaceutical Sciences, 2011, 100, 3365-3373. | 3.3 | 88        |
| 77 | Ion-pair LC–UV Method for the Determination of Boanmycin in Mouse Plasma and Its Application to a<br>Pharmacokinetic Study. Chromatographia, 2010, 72, 357-359.                                 | 1.3 | 1         |
| 78 | Effect of counter-ions and penetration enhancers on the skin permeation of flurbiprofen. Journal of<br>Pharmaceutical Sciences, 2010, 99, 1826-1837.                                            | 3.3 | 29        |
| 79 | Transdermal patches for site-specific delivery of anastrozole: In vitro and local tissue disposition evaluation. International Journal of Pharmaceutics, 2010, 391, 73-78.                      | 5.2 | 27        |
| 80 | Design and in vivo evaluation of an indapamide transdermal patchâ~†. International Journal of Pharmaceutics, 2009, 370, 129-135.                                                                | 5.2 | 57        |
| 81 | Determination of Boanmycin in Pharmaceutical Preparations by a Simple and Rapid Ion-pair LC Method.<br>Chromatographia, 2009, 70, 643-646.                                                      | 1.3 | 3         |
| 82 | Homogeneous dielectric barrier discharge in air for surface treatment. , 2007, , .                                                                                                              |     | 2         |
| 83 | The use of complexation with alkanolamines to facilitate skin permeation of mefenamic acid.<br>International Journal of Pharmaceutics, 2003, 262, 13-22.                                        | 5.2 | 37        |
| 84 | The Enhancing Effect of a Triethanolamine-Ethanol-Isopropyl Myristate Mixed System on the Skin<br>Permeation of Acidic Drugs Biological and Pharmaceutical Bulletin, 2002, 25, 1339-1344.       | 1.4 | 28        |