Wang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3299545/publications.pdf

Version: 2024-02-01

84	1,940 citations	218677 26 h-index	330143 37 g-index
papers	citations	II-IIIQEX	g-muex
85 all docs	85 docs citations	85 times ranked	1572 citing authors

#	Article	IF	CITATIONS
1	Nanonization of Itraconazole by High Pressure Homogenization: Stabilizer Optimization and Effect of Particle Size on Oral Absorption. Journal of Pharmaceutical Sciences, 2011, 100, 3365-3373.	3.3	88
2	Time dependence of the enhancement effect of chemical enhancers: Molecular mechanisms of enhancing kinetics. Journal of Controlled Release, 2017, 248, 33-44.	9.9	58
3	Design and in vivo evaluation of an indapamide transdermal patchâ^†. International Journal of Pharmaceutics, 2009, 370, 129-135.	5.2	57
4	A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release. Journal of Controlled Release, 2017, 252, 83-94.	9.9	55
5	Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. Journal of Controlled Release, 2016, 227, 13-22.	9.9	52
6	Intra-articular drug delivery from an optimized topical patch containing teriflunomide and lornoxicam for rheumatoid arthritis treatment: Does the topical patch really enhance a local treatment?. Journal of Controlled Release, 2013, 169, 73-81.	9.9	49
7	A systematic approach to determination of permeation enhancer action efficacy and sites: Molecular mechanism investigated by quantitative structureâ^activity relationship. Journal of Controlled Release, 2020, 322, 1-12.	9.9	48
8	Effect of drug physicochemical properties on drug release and their relationship with drug skin permeation behaviors in hydroxyl pressure sensitive adhesive. European Journal of Pharmaceutical Sciences, 2016, 93, 437-446.	4.0	46
9	Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian Journal of Pharmaceutical Sciences, 2016, 11, 248-254.	9.1	46
10	Mechanism study on ion-pair complexes controlling skin permeability: Effect of ion-pair dissociation in the viable epidermis on transdermal permeation of bisoprolol. International Journal of Pharmaceutics, 2017, 532, 29-36.	5.2	41
11	Formulation and in vitro/in vivo correlation of a drugâ€inâ€adhesive transdermal patch containing azasetron. Journal of Pharmaceutical Sciences, 2012, 101, 4540-4548.	3.3	40
12	Electroless silver plating on the PET fabrics modified with 3â€mercaptopropyltriethoxysilane. Journal of Applied Polymer Science, 2012, 124, 1912-1918.	2.6	40
13	Drug in adhesive patch of palonosetron: Effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation. International Journal of Pharmaceutics, 2016, 511, 1088-1097.	5.2	39
14	Molecular mechanism of ion-pair releasing from acrylic pressure sensitive adhesive containing carboxyl group: Roles of doubly ionic hydrogen bond in the controlled release process of bisoprolol ion-pair. Journal of Controlled Release, 2018, 289, 146-157.	9.9	39
15	A donepezil/cyclodextrin complexation orodispersible film: Effect of cyclodextrin on taste-masking based on dynamic process and in vivo drug absorption. Asian Journal of Pharmaceutical Sciences, 2019, 14, 183-192.	9.1	39
16	The use of complexation with alkanolamines to facilitate skin permeation of mefenamic acid. International Journal of Pharmaceutics, 2003, 262, 13-22.	5.2	37
17	Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. International Journal of Pharmaceutics, 2014, 460, 13-23.	5.2	37
18	Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator. Carbohydrate Polymers, 2017, 172, 197-204.	10.2	36

#	Article	IF	CITATIONS
19	The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: Quantitative determination of ionic interaction and molecular mechanism characterization. European Journal of Pharmaceutical Sciences, 2018, 115, 330-338.	4.0	35
20	Drug in Adhesive Patch of Zolmitriptan: Formulation and In vitro /In vivo Correlation. AAPS PharmSciTech, 2015, 16, 1245-1253.	3.3	33
21	Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: the relationship of hydrogen bonding strength and controlled release capacity. Acta Pharmaceutica Sinica B, 2020, 10, 928-945.	12.0	33
22	Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes. European Journal of Pharmaceutical Sciences, 2017, 107, 138-147.	4.0	30
23	Effect of counter-ions and penetration enhancers on the skin permeation of flurbiprofen. Journal of Pharmaceutical Sciences, 2010, 99, 1826-1837.	3.3	29
24	Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug–Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. Molecular Pharmaceutics, 2021, 18, 1157-1166.	4.6	29
25	The Enhancing Effect of a Triethanolamine-Ethanol-Isopropyl Myristate Mixed System on the Skin Permeation of Acidic Drugs Biological and Pharmaceutical Bulletin, 2002, 25, 1339-1344.	1.4	28
26	Effect of unsaturated menthol analogues on the in vitro penetration of 5-fluorouracil through rat skin. International Journal of Pharmaceutics, 2013, 443, 120-127.	5.2	28
27	Transdermal patches for site-specific delivery of anastrozole: In vitro and local tissue disposition evaluation. International Journal of Pharmaceutics, 2010, 391, 73-78.	5.2	27
28	The Control of Skin-Permeating Rate of Bisoprolol by Ion-Pair Strategy for Long-Acting Transdermal Patches. AAPS PharmSciTech, 2012, 13, 811-815.	3.3	27
29	The relationship between hydrogen-bonded ion-pair stability and transdermal penetration of lornoxicam with organic amines. European Journal of Pharmaceutical Sciences, 2012, 47, 325-330.	4.0	27
30	The molecular design of drug-ionic liquids for transdermal drug delivery: Mechanistic study of counterions structure on complex formation and skin permeation. International Journal of Pharmaceutics, 2021, 602, 120560.	5.2	27
31	The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol. European Journal of Pharmaceutical Sciences, 2015, 78, 140-150.	4.0	26
32	Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive. European Journal of Pharmaceutical Sciences, 2018, 119, 102-111.	4.0	26
33	Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. International Journal of Pharmaceutics, 2018, 545, 163-169.	5.2	26
34	Mechanism of Ion-Pair Strategy in Modulating Skin Permeability of Zaltoprofen: Insight from Molecular-Level Resolution Based on Molecular Modeling and Confocal Laser Scanning Microscopy. Journal of Pharmaceutical Sciences, 2015, 104, 3395-3403.	3.3	25
35	Effect of isopropyl myristate on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. Acta Pharmaceutica Sinica B, 2016, 6, 623-628.	12.0	25
36	Investigate the control release effect of ion-pair in the development of escitalopram transdermal patch using FT-IR spectroscopy, molecular modeling and thermal analysis. International Journal of Pharmaceutics, 2017, 529, 391-400.	5 . 2	25

#	Article	IF	CITATIONS
37	Regulating the Skin Permeation Rate of Escitalopram by Ion-pair Formation with Organic Acids. AAPS PharmSciTech, 2016, 17, 1267-1273.	3.3	24
38	Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti $\hat{a} \in \text{``aging component } \hat{l} \pm \hat{a} \in ``lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation. European Journal of Pharmaceutical Sciences, 2020, 141, 105042.$	4.0	24
39	Alternative therapy of rheumatoid arthritis with a novel transdermal patch containing Siegesbeckiae Herba extract. Journal of Ethnopharmacology, 2021, 265, 113294.	4.1	24
40	Preparation of an oral thin film containing meclizine hydrochloride: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2015, 496, 314-322.	5.2	22
41	Dicarboxylic acid as a linker to improve the content of amorphous drug in drug-in-polymer film: Effects of molecular mobility, electrical conductivity and intermolecular interactions. Journal of Controlled Release, 2020, 317, 142-153.	9.9	22
42	Investigation of molecular mobility of pressure-sensitive-adhesive in oxybutynin patch in vitro and in vivo: Effect of sorbitan monooleate on drug release and patch mechanical property. European Journal of Pharmaceutical Sciences, 2018, 122, 116-124.	4.0	21
43	Development of long-acting rivastigmine drug-in-adhesive patch utilizing ion-pair strategy and characterization of controlled release mechanism. European Journal of Pharmaceutical Sciences, 2021, 161, 105774.	4.0	21
44	An investigation on percutaneous permeation of flurbiprofen enantiomers: The role of molecular interaction between drug and skin components. International Journal of Pharmaceutics, 2021, 601, 120503.	5.2	20
45	The effect of ion-pair formation combined with penetration enhancers on the skin permeation of loxoprofen. Drug Delivery, 2016, 23, 1-8.	5.7	19
46	Saturated Long-Chain Esters of Isopulegol as Novel Permeation Enhancers for Transdermal Drug Delivery. Pharmaceutical Research, 2014, 31, 1907-1918.	3.5	18
47	Lamellar Liquid Crystal Improves the Skin Retention of 3-O-Ethyl-Ascorbic Acid and Potassium 4-Methoxysalicylate In Vitro and In Vivo for Topical Preparation. AAPS PharmSciTech, 2016, 17, 767-777.	3.3	18
48	<i>In vivo</i> pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on <b?li>1±-tocopherol succinate-modified chitosan. Drug Delivery, 2016, 23, 2651-2660.</b?li>	5.7	18
49	A molecular mechanism investigation of the transdermal/topical absorption classification system on the basis of drug skin permeation and skin retention. International Journal of Pharmaceutics, 2021, 608, 121082.	5.2	18
50	Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin. European Journal of Pharmaceutical Sciences, 2018, 124, 105-113.	4.0	17
51	Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. European Journal of Pharmaceutical Sciences, 2019, 138, 105009.	4.0	17
52	Development of a daphnetin transdermal patch using chemical enhancer strategy: insights of the enhancement effect of Transcutol P and the assessment of pharmacodynamics. Drug Development and Industrial Pharmacy, 2018, 44, 1642-1649.	2.0	16
53	Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch. International Journal of Pharmaceutics, 2019, 572, 118800.	5.2	16
54	Investigation on the effect of deep eutectic formation on drug-polymer miscibility and skin permeability of rotigotine drug-in-adhesive patch. International Journal of Pharmaceutics, 2020, 574, 118852.	5.2	16

#	Article	IF	CITATIONS
55	An investigation on the effect of drug physicochemical properties on the enhancement strength of enhancer: The role of drug-skin-enhancer interactions. International Journal of Pharmaceutics, 2021, 607, 120945.	5.2	16
56	Development of a drug-in-adhesive patch combining ion pair and chemical enhancer strategy for transdermal delivery of zaltoprofen: pharmacokinetic, pharmacodynamic and <i>in vitro</i> /i>/ <i>in vivo</i> /i> correlation evaluation. Drug Delivery, 2016, 23, 3461-3470.	5.7	15
57	Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation. Journal of Pharmacy and Pharmacology, 2015, 67, 1232-1239.	2.4	14
58	Molecular mechanism of high capacity-high release transdermal drug delivery patch with carboxyl acrylate polymer: Roles of ion-ion repulsion and hydrogen bond. International Journal of Pharmaceutics, 2020, 585, 119376.	5.2	14
59	Mechanistic investigation and reversible effect of 2-isopropyl-5-methylcyclohexyl heptanoate on the <i>in vitro </i> percutaneous absorption of indomethacin. Drug Delivery, 2014, 21, 26-33.	5.7	13
60	Mechanistic insights of the controlled release properties of amide adhesive and hydroxyl adhesive. European Journal of Pharmaceutical Sciences, 2018, 119, 13-21.	4.0	13
61	Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer. International Journal of Pharmaceutics, 2022, 612, 121377.	5.2	13
62	Probing the Role of Ion-Pair Strategy in Controlling Dexmedetomidine Penetrate Through Drug-in-Adhesive Patch: Mechanistic Insights Based on Release and Percutaneous Absorption Process. AAPS PharmSciTech, 2020, 21, 4.	3.3	12
63	Roles of molecular interaction and mobility on loading capacity and release rate of drug-ionic liquid in long-acting controlled release transdermal patch. Journal of Molecular Liquids, 2022, 352, 118752.	4.9	12
64	An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin. International Journal of Pharmaceutics, 2017, 529, 161-167.	5.2	10
65	The Improved Cargo Loading and Physical Stability of Ibuprofen Orodispersible Film: Molecular Mechanism of Ion-Pair Complexes on Drug-Polymer Miscibility. Journal of Pharmaceutical Sciences, 2020, 109, 1356-1364.	3.3	10
66	Effect of Backing Films on the Transdermal Delivery of Donepezil from Patches. AAPS PharmSciTech, 2014, 15, 1569-1573.	3.3	8
67	Investigation of Effect of Isopropyl Palmitate on Drug Release from Transdermal Patch and Molecular Dynamics Study. AAPS PharmSciTech, 2019, 20, 174.	3.3	8
68	Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. International Journal of Pharmaceutics, 2019, 572, 118831.	5.2	8
69	Mechanistic Insights of the Critical Role of Hydrogen Donor in Controlling Drug Release From Acrylate Adhesive. Journal of Pharmaceutical Sciences, 2020, 109, 1096-1104.	3.3	7
70	Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy, 13C NMR Spectroscopy, and Molecular Simulation. AAPS PharmSciTech, 2021, 22, 198.	3.3	7
71	Effect of the combination of permeation enhancer and ion-pairs strategies on transdermal delivery of tofacitinib. International Journal of Pharmaceutics, 2022, 611, 121190.	5.2	7
72	PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. International Journal of Pharmaceutics, 2022, 615, 121480.	5.2	7

#	Article	IF	CITATIONS
73	lonic liquids in transdermal drug delivery system: Current applications and future perspectives. Chinese Chemical Letters, 2023, 34, 107631.	9.0	7
74	Dual-directional regulation of drug permeating amount by combining the technique of ion-pair complexation with chemical enhancers for the synchronous permeation of indapamide and bisoprolol in their compound patch through rabbit skin. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 91, 59-65.	4.3	6
75	Artesunate: A natural product-based immunomodulator involved in human complement. Biomedicine and Pharmacotherapy, 2021, 136, 111234.	5.6	5
76	Investigation of Controlled Release Molecular Mechanism of Oil Phase in Spilanthol Emulsion: Development and In Vitro, In Vivo Characterization. AAPS PharmSciTech, 2019, 20, 227.	3.3	4
77	Determination of Boanmycin in Pharmaceutical Preparations by a Simple and Rapid Ion-pair LC Method. Chromatographia, 2009, 70, 643-646.	1.3	3
78	Determination of tulobuterol in rat plasma using a liquid chromatography–tandem mass spectrometry method and its application to a pharmacokinetic study of tulobuterol patch. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008, 108-114.	2.3	3
79	Development and Evaluation of Cucurbitacin B Microemulsion: the Effect of Oil Phase and Aqueous Phase on Drug Percutaneous Absorption Based on ATR-FTIR Spectroscopy and Molecular Modeling. AAPS PharmSciTech, 2020, 21, 258.	3.3	3
80	Homogeneous dielectric barrier discharge in air for surface treatment., 2007,,.		2
81	Development of Tizanidine Drug-in-Adhesive Patch: Molecular Mechanism of Permeation Enhancer on Regulating Miscibility and Drug Release by Affecting the Status of Ion-Pair in Polymer Matrix. Journal of Pharmaceutical Sciences, 2020, 109, 2501-2511.	3.3	2
82	A Systematic Quantitative Evaluation of Permeation Enhancement Window: Transdermal Permeation Enhancing Dynamics Establishment and Molecular Mechanisms Characterization of Permeation Enhancer. Journal of Pharmaceutical Sciences, 2022, , .	3.3	2
83	lon-pair LC–UV Method for the Determination of Boanmycin in Mouse Plasma and Its Application to a Pharmacokinetic Study. Chromatographia, 2010, 72, 357-359.	1.3	1
84	Transdermal Enhancement Strategy of Lappaconitine: Alteration of Keratin Configuration by Counter-Ion. AAPS PharmSciTech, 2022, 23, 61.	3.3	1