Tao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3299157/publications.pdf

Version: 2024-02-01

		57758	Ş	95266	
183	6,194	44		68	
papers	citations	h-index		g-index	
107	107	107		F 4 4 2	
187	187	187		5442	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Recent progress in controlled carbonization of (waste) polymers. Progress in Polymer Science, 2019, 94, 1-32.	24.7	217
2	Synthesis of Multiwalled Carbon Nanotubes by Catalytic Combustion of Polypropylene. Angewandte Chemie - International Edition, 2005, 44, 1517-1520.	13.8	203
3	Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chemical Engineering Journal, 2019, 360, 250-259.	12.7	172
4	Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. Journal of Materials Chemistry A, 2015, 3, 341-351.	10.3	156
5	Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. Journal of Power Sources, 2019, 412, 1-9.	7.8	150
6	Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter. Journal of Physical Chemistry C, 2011, 115, 17717-17724.	3.1	125
7	Rational Design of Highâ€Performance Bilayer Solar Evaporator by Using Waste Polyesterâ€Derived Porous Carbonâ€Coated Wood. Energy and Environmental Materials, 2022, 5, 617-626.	12.8	116
8	Molten salts promoting the "controlled carbonization―of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. Journal of Materials Chemistry A, 2019, 7, 22912-22923.	10.3	113
9	Interfacial behaviour of compatibilizers in polymer blends. Polymer, 1994, 35, 281-285.	3.8	105
10	Catalyzing Carbonization of Polypropylene Itself by Supported Nickel Catalyst during Combustion of Polypropylene/Clay Nanocomposite for Improving Fire Retardancy. Chemistry of Materials, 2005, 17, 2799-2802.	6.7	103
11	Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chemistry and Engineering, 2014, 2, 2837-2844.	6.7	103
12	Observation of Inverted Phases in Poly(styrene-b-butadiene-b-styrene) Triblock Copolymer by Solvent-Induced Orderâ^'Disorder Phase Transition. Macromolecules, 2000, 33, 9561-9567.	4.8	101
13	Synthesis and characterization of polyethylene/clay-silica nanocomposites: A montmorillonite/silica-hybrid-supported catalyst and in situ polymerization. Journal of Polymer Science Part A, 2004, 42, 941-949.	2.3	98
14	Upcycling Waste Polypropylene into Graphene Flakes on Organically Modified Montmorillonite. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 4173-4181.	3.7	97
15	Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe ₃ O ₄ nanoparticles. RSC Advances, 2015, 5, 31910-31919.	3.6	95
16	Catalyzing carbonization of poly(l-lactide) by nanosized carbon black combined with Ni2O3 for improving flame retardancy. Journal of Materials Chemistry, 2012, 22, 19974.	6.7	83
17	Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polymer International, 2005, 54, 904-908.	3.1	82
18	Macromolecular brushes synthesized by "grafting from―approach based on "click chemistry―and RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 443-453.	2.3	82

#	Article	IF	CITATIONS
19	Nanosized Carbon Black Combined with Ni ₂ O ₃ as "Universal―Catalysts for Synergistically Catalyzing Carbonization of Polyolefin Wastes to Synthesize Carbon Nanotubes and Application for Supercapacitors. Environmental Science & Technology, 2014, 48, 4048-4055.	10.0	82
20	Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. Chemosphere, 2020, 253, 126755.	8.2	81
21	From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Management, 2019, 85, 333-340.	7.4	80
22	Preparation and characterization of poly(ethyl acrylate)/bentonite nanocomposites byin situ emulsion polymerization. Journal of Polymer Science Part A, 2002, 40, 1706-1711.	2.3	78
23	Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world―mixed waste plastics toward excellent-performance supercapacitors. Waste Management, 2019, 87, 691-700.	7.4	76
24	A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue. Journal of Colloid and Interface Science, 2015, 445, 195-204.	9.4	74
25	Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes. Chemical Engineering Journal, 2014, 248, 27-40.	12.7	71
26	Striking influence of Fe2O3 on the "catalytic carbonization―of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red. Journal of Materials Chemistry A, 2013, 1, 5247.	10.3	69
27	CVD generated mesoporous hollow carbon spheres as supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 246-250.	4.7	68
28	Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cu–Ni/C composites and their application in catalyzing "Click―reaction. Applied Catalysis B: Environmental, 2012, 117-118, 185-193.	20.2	67
29	Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. Applied Catalysis B: Environmental, 2014, 152-153, 289-299.	20.2	65
30	Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. Journal of Applied Polymer Science, 2007, 106, 3488-3494.	2.6	63
31	Three dimensional graphene/carbonized metal-organic frameworks based high-performance supercapacitor. Carbon, 2020, 157, 55-63.	10.3	62
32	Converting poly(ethylene terephthalate) waste into N-doped porous carbon as CO2 adsorbent and solar steam generator. Green Energy and Environment, 2022, 7, 411-422.	8.7	61
33	Striking influence of chain structure of polyethylene on the formation of cup-stacked carbon nanotubes/carbon nanofibers under the combined catalysis of CuBr and NiO. Applied Catalysis B: Environmental, 2014, 147, 592-601.	20.2	60
34	Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene. Journal of Applied Polymer Science, 2006, 102, 5988-5993.	2.6	57
35	Synthesis and characterization of a novel organophosphorus oligomer and its application in improving flame retardancy of epoxy resin. RSC Advances, 2014, 4, 17607-17614.	3.6	55
36	High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene. Science China Materials, 2020, 63, 779-793.	6.3	55

#	Article	IF	CITATIONS
37	Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage. Science of the Total Environment, 2020, 723, 138055.	8.0	55
38	Selfâ€Floating Efficient Solar Steam Generators Constructed Using Superâ€Hydrophilic N,O Dualâ€Doped Carbon Foams from Waste Polyester. Energy and Environmental Materials, 2022, 5, 1204-1213.	12.8	55
39	Fractionated crystallization in polyolefins–nylon 6 blends. Journal of Applied Polymer Science, 1994, 53, 355-360.	2.6	52
40	Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites. Composites Communications, 2020, 17, 170-176.	6.3	51
41	Synergetic effect of epoxy resin and maleic anhydride grafted polypropylene on improving mechanical properties of polypropylene/short carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 2014, 67, 212-220.	7.6	50
42	Synthesis and Structure–Property Relationships of Polypropylene- <i>g</i> pclypropylene- <i>g</i> pclypropylene- <i>g</i> Chain Branched Molecular Structures. Macromolecules, 2011, 44, 4167-4179.	4.8	49
43	A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chemical Communications, 2020, 56, 9142-9145.	4.1	49
44	Effects of Surfactant Loadings on the Dispersion of Clays in Maleated Polypropylene. Langmuir, 2003, 19, 7157-7159.	3.5	48
45	Hierarchical porous carbon materials from nanosized metal-organic complex for high-performance symmetrical supercapacitor. Electrochimica Acta, 2018, 269, 580-589.	5.2	47
46	Controlling melt reactions during preparing long chain branched polypropylene using copper N,N-dimethyldithiocarbamate. Polymer, 2010, 51, 1593-1598.	3.8	45
47	Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. Journal of Applied Polymer Science, 2020, 137, 48338.	2.6	45
48	Novel Method for Preparing Auxetic Foam from Closed-Cell Polymer Foam Based on the Steam Penetration and Condensation Process. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22669-22677.	8.0	44
49	Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors. Nanotechnology, 2020, 31, 035402.	2.6	42
50	One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. Journal of Materials Chemistry A, 2014, 2, 7461-7470.	10.3	41
51	Large-Scale and Low-Cost Motivation of Nitrogen-Doped Commercial Activated Carbon for High-Energy-Density Supercapacitor. ACS Applied Energy Materials, 2019, 2, 4234-4243.	5.1	41
52	Strengthening Carbon Deposition of Polyolefin Using Combined Catalyst as a General Method for Improving Fire Retardancy. Macromolecular Rapid Communications, 2008, 29, 789-793.	3.9	40
53	A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Composites Science and Technology, 2018, 164, 82-91.	7.8	37
54	Combination of Carbon Nanotubes with Ni ₂ O ₃ for Simultaneously Improving the Flame Retardancy and Mechanical Properties of Polyethylene. Journal of Physical Chemistry C, 2009, 113, 13092-13097.	3.1	35

#	Article	IF	CITATIONS
55	Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polymers for Advanced Technologies, 2013, 24, 971-977.	3.2	35
56	Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base. Angewandte Chemie - International Edition, 2016, 55, 11975-11978.	13.8	35
57	Sequence and Regularity Controlled Coordination Copolymerization of Butadiene and Styrene: Strategy and Mechanism. Macromolecules, 2017, 50, 849-856.	4.8	35
58	Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor. Nanomaterials, 2020, 10, 1097.	4.1	33
59	High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane. Science China Materials, 2022, 65, 201-212.	6.3	32
60	In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process. Polymer, 2018, 155, 116-128.	3.8	31
61	Rigid cross-linked PVC foams with high shear properties: The relationship between mechanical properties and chemical structure of the matrix. Composites Science and Technology, 2014, 97, 74-80.	7.8	30
62	Simultaneously improving the mechanical properties and flame retardancy of polypropylene using functionalized carbon nanotubes by covalently wrapping flame retardants followed by linking polypropylene. Materials Chemistry Frontiers, 2017, 1, 716-726.	5.9	30
63	In situ ethylene homopolymerization and copolymerization catalyzed by zirconocene catalysts entrapped inside functionalized montmorillonite. Journal of Polymer Science Part A, 2003, 41, 2187-2196.	2.3	29
64	Bilirubin adsorption on amine/methyl bifunctionalized SBA-15 with platelet morphology. Colloids and Surfaces B: Biointerfaces, 2011, 84, 571-578.	5.0	29
65	Synthesis of Diverse Well-Defined Functional Polymers Based on Hydrozirconation and Subsequent Anti-Markovnikov Halogenation of 1,2-Polybutadiene. Macromolecules, 2012, 45, 1190-1197.	4.8	28
66	Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Advances, 2014, 4, 33776-33784.	3.6	28
67	Striking influence of NiO catalyst diameter on the carbonization of polypropylene into carbon nanomaterials and their high performance in the adsorption of oils. RSC Advances, 2014, 4, 33806-33814.	3.6	28
68	Pressurized carbonization of mixed plastics into porous carbon sheets on magnesium oxide. RSC Advances, 2018, 8, 2469-2476.	3.6	28
69	The <i>in situ</i> construction of three-dimensional core–shell-structured TiO ₂ @PPy/rGO nanocomposites for improved supercapacitor electrode performance. New Journal of Chemistry, 2021, 45, 1092-1099.	2.8	28
70	Preparation of polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers. II. Poly(ethyl acrylate)/SiO2. Journal of Applied Polymer Science, 2002, 86, 3532-3536.	2.6	27
71	Preparation of functionalized montmorillonites and their application in supported zirconocene catalysts for ethylene polymerization. Journal of Polymer Science Part A, 2002, 40, 1892-1898.	2.3	27
72	Polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers. I. Morphology of poly(butyl methacrylate)/SiO2. Journal of Applied Polymer Science, 2002, 83, 446-454.	2.6	26

#	Article	IF	Citations
73	Synthesis and characterization of polyethylene chains grafted onto the sidewalls of singleâ€walled carbon nanotubes via copolymerization. Journal of Polymer Science Part A, 2007, 45, 5459-5469.	2.3	26
74	Melt viscosity behavior of C60 containing star polystyrene composites. Soft Matter, 2013, 9, 6282.	2.7	26
75	Conversion of polystyrene into porous carbon sheets and hollow carbon shells over different magnesium oxide templates for efficient removal of methylene blue. RSC Advances, 2015, 5, 105047-105056.	3.6	26
76	Novel Method for Preparing a High-Performance Auxetic Foam Directly from Polymer Resin by a One-Pot CO ₂ Foaming Process. ACS Applied Materials & Interfaces, 2020, 12, 48040-48048.	8.0	26
77	Synthesis and characterization of a novel organophosphorus flame retardant and its application in polypropylene. Polymers for Advanced Technologies, 2013, 24, 653-659.	3.2	25
78	High-performance solar vapor generation by sustainable biomimetic snake-scale-like porous carbon. Sustainable Energy and Fuels, 2020, 4, 5522-5532.	4.9	25
79	Preparation of Fe ₃ O ₄ @polypyrrole composite materials for asymmetric supercapacitor applications. New Journal of Chemistry, 2021, 45, 16011-16018.	2.8	25
80	Ring-opening polymerization and block copolymerization of L-lactide with divalent samarocene complex. Journal of Polymer Science Part A, 2003, 41, 2667-2675.	2.3	24
81	Interplay between the composition of LLDPE/PS blends and their compatibilization with polyethylene-graft-polystyrene in the foaming behaviour. RSC Advances, 2015, 5, 27181-27189.	3.6	24
82	Effect of particle size on the flame retardancy of poly(butylene succinate)/Mg(OH) ₂ composites. Fire and Materials, 2016, 40, 1090-1096.	2.0	24
83	Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chemical Engineering Journal, 2022, 427, 131635.	12.7	24
84	Catalytic Carbonization of Chlorinated Poly(vinyl chloride) Microfibers into Carbon Microfibers with High Performance in the Photodegradation of Congo Red. Journal of Physical Chemistry C, 2013, 117, 17016-17023.	3.1	23
85	Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors. Journal of Alloys and Compounds, 2017, 726, 466-473.	5.5	23
86	Waste-to-wealth: Sustainable conversion of polyester waste into porous carbons as efficient solar steam generators. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 71-78.	5. 3	23
87	One-pot green mass production of hierarchically porous carbon via a recyclable salt-templating strategy. Green Energy and Environment, 2022, 7, 818-828.	8.7	23
88	Compatibilization of polypropylene/poly (ethylene oxide) blends and crystallization behavior of the blends. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1991-1998.	2.1	22
89	Preparation and application of a novel core-shell-particle-supported zirconocene catalyst. Journal of Polymer Science Part A, 2001, 39, 2085-2092.	2.3	21
90	Characterization of high melt strength polypropylene synthesized via silane grafting initiated by <i>in situ</i> heat induction reaction. Journal of Applied Polymer Science, 2008, 110, 3727-3732.	2.6	21

#	Article	IF	CITATIONS
91	Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate). Polymers for Advanced Technologies, 2015, 26, 128-135.	3.2	21
92	Nanostructure and Linear Rheological Response of Comb-like Copolymer PSVS- <i>g</i> PE Melts: Influences of Branching Densities and Branching Chain Length. Macromolecules, 2015, 48, 7640-7648.	4.8	21
93	Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. New Journal of Chemistry, 2017, 41, 13553-13559.	2.8	21
94	Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 546, 344-350.	9.4	21
95	Structure and properties of multiâ€walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp ₂ ZrCl ₂ catalyst. Polymer Composites, 2010, 31, 507-515.	4.6	20
96	Controlled Chainâ€Scission of Polybutadiene by the Schwartz Hydrozirconation. Chemistry - A European Journal, 2013, 19, 541-548.	3.3	20
97	Poly(vinyl alcohol)/GO-MMT nanocomposites: Preparation, structure and properties. Chinese Journal of Polymer Science (English Edition), 2015, 33, 329-338.	3.8	20
98	Dependence of microstructures and melt behaviour of polypropylene/fullerene C60 nanocomposites on in situ interfacial reaction. Soft Matter, 2011, 7, 5290.	2.7	19
99	A novel high performance oxazine derivative: design of tetrafunctional monomer, step-wise ring-opening polymerization, improved thermal property and broadened processing window. RSC Advances, 2015, 5, 33623-33631.	3.6	19
100	Hierarchical structure and properties of rigid PVC foam crosslinked by the reaction between anhydride and diisocyanate. Journal of Applied Polymer Science, 2018, 135, 46141.	2.6	19
101	Flame retardancy of <i> biodegradable < /i > polylactic acid with piperazine pyrophosphate and melamine cyanurate as flame retardant. Journal of Fire Sciences, 2022, 40, 254-273.</i>	2.0	19
102	Structure and properties of high melt strength polypropylene prepared by combined method of blending and crosslinking. Journal of Applied Polymer Science, 2010, 116, 1739-1746.	2.6	18
103	Controllable Synthesis of 3D Hollowâ€Carbonâ€Spheres/Grapheneâ€Flake Hybrid Nanostructures from Polymer Nanocomposite by Selfâ€Assembly and Feasibility for Lithiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 874-879.	2.3	18
104	Synthesis and Characterization of Polypropylene-Based Polyurethanes. Macromolecules, 2020, 53, 3349-3357.	4.8	18
105	Preparation of rigid cross-linked PVC foam with excellent thermal insulation through adding high-reflectivity IR opacifier. Composites Science and Technology, 2021, 203, 108566.	7.8	18
106	Compatibilization and structure of poly(propylene)/nylon-12 blends. Macromolecular Chemistry and Physics, 1994, 195, 2931-2945.	2.2	17
107	Preparation and characterization of long chain branched polypropylene mediated by different heteroaromatic ring derivatives. Polymer, 2013, 54, 639-651.	3.8	17
108	Striking Influence about HZSM-5 Content and Nickel Catalyst on Catalytic Carbonization of Polypropylene and Polyethylene into Carbon Nanomaterials. Industrial & Engineering Chemistry Research, 2013, 52, 15578-15588.	3.7	17

#	Article	IF	CITATIONS
109	"Oneâ€pot―synthesis of crosslinked siliconeâ€containing macromolecular charring agent and its synergistic flame retardant poly(<scp>l</scp> â€lactic acid) with ammonium polyphosphate. Polymers for Advanced Technologies, 2017, 28, 1409-1417.	3.2	17
110	Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance. International Journal of Hydrogen Energy, 2019, 44, 13675-13683.	7.1	17
111	Highly selective cis-1,4 copolymerization of dienes with polar 2-(3-methylidenepent-4-en-1-yl) pyridine: an approach for recyclable elastomers. Polymer Chemistry, 2020, 11, 1646-1652.	3.9	16
112	Ethylene polymerization with porous polystyrene spheres supported Cp2ZrCl2 catalyst. Journal of Polymer Science Part A, 2003, 41, 3313-3319.	2.3	15
113	Effect of leaving group in dithiocarbamates on mediating melt radical reaction during preparing long chain branched polypropylene. Polymer, 2012, 53, 947-955.	3.8	15
114	Well-Designed Porous Graphene Flakes for Lithium-Ion Batteries with Outstanding Rate Performance. Langmuir, 2019, 35, 12613-12619.	3.5	15
115	Compatibilization of Polyamide-6/Syndiotactic Polystyrene Blends Using Styrene/Glycidyl Methacrylate Copolymers. Polymer Journal, 2003, 35, 141-147.	2.7	14
116	Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base. Angewandte Chemie, 2016, 128, 12154-12157.	2.0	14
117	Sustainable polylysine conversion to nitrogenâ€containing porous carbon flakes: Potential application in supercapacitors. Journal of Applied Polymer Science, 2019, 136, 48214.	2.6	14
118	Striking effect of carbon nanotubes on adjusting sc-CO2 foaming performance of PS/LLDPE blends and forming semi-open cellular structure. Polymer, 2020, 207, 122896.	3.8	14
119	A "Plasticizing-Foaming-Reinforcing―approach for creating thermally insulating PVC/polyurea blend foams with shape memory function. Chemical Engineering Journal, 2022, 450, 138071.	12.7	14
120	Flow-induced structure and rheological properties of multiwall carbon nanotube/polydimethylsiloxane composites. RSC Advances, 2014, 4, 62759-62768.	3.6	13
121	Synthesis and rheological investigation of model symmetric 3-arm star polyethylene. Chinese Journal of Polymer Science (English Edition), 2014, 32, 51-63.	3.8	13
122	The effect of particle shape on the structure and rheological properties of carbon-based particle suspensions. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1550-1561.	3.8	13
123	Insight into the influence of OA-Fe3O4 nanoparticles on the morphology and scCO2 batch-foaming behavior of cocontinuous LLDPE/PS immiscible blends at semi-solid state. Polymer, 2017, 129, 169-178.	3.8	13
124	Degradation of anhydride-cured epoxy resin using simultaneously recyclable solvent and organic base catalyst. Journal of Material Cycles and Waste Management, 2018, 20, 568-577.	3.0	13
125	Adjusting cell structure of polypropylene composite foams by controlling the size and dispersed state of NaCl particles during CO2 batch foaming process. Polymer, 2020, 194, 122406.	3.8	13
126	The rheological, thermostable, and mechanical properties of polypropylene/fullerene C ₆₀ nanocomposites with improved interfacial interaction. Polymer Engineering and Science, 2012, 52, 1457-1463.	3.1	12

#	Article	IF	CITATIONS
127	Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: a combination of a physical network and chemical crosslinking. RSC Advances, 2015, 5, 5484-5493.	3.6	12
128	Multifunctional nitrogen-doped nanoporous carbons derived from metal–organic frameworks for efficient CO ₂ storage and high-performance lithium-ion batteries. New Journal of Chemistry, 2019, 43, 10405-10412.	2.8	12
129	Preparation of Polypropylene Foams with Bimodal Cell Structure Using a Microporous Molecular Sieve as a Nucleating Agent. Industrial & Engineering Chemistry Research, 2020, 59, 7594-7603.	3.7	12
130	Studies on blends of LLDPE and polar polymers compatibilized by a random copolymer. Journal of Applied Polymer Science, 1999, 71, 967-973.	2.6	11
131	Preparation of macroporous functionalized polymer beads by a multistep polymerization and their application in zirconocene catalysts for ethylene polymerization. Journal of Polymer Science Part A, 2003, 41, 873-880.	2.3	11
132	Styrene polymerization catalyzed by metal porphyrin complex/MAO for ⟨i⟩in situ⟨/i⟩ synthesizing polystyrene containing air stable Ï€ cation radicals. Journal of Polymer Science Part A, 2008, 46, 1240-1248.	2.3	11
133	Preparation and chemical reactions of rigid crossâ€linked poly(vinyl chloride) foams modified by epoxy compounds. Journal of Applied Polymer Science, 2014, 131, .	2.6	11
134	Morphology, Tensile Strength and Thermal Behavior of Isotactic Polypropylene/Syndiotactic Polystyrene Blends Compatibilized by SEBS Copolymers. Polymer Journal, 2004, 36, 284-293.	2.7	10
135	Synthesis of wellâ€defined combâ€like graft (co)polymers by nucleophilic substitution reaction between living polymers and polyhalohydrocarbon. Journal of Polymer Science Part A, 2013, 51, 1664-1671.	2.3	10
136	Porous nanopeapod Pd catalyst with excellent stability and efficiency. Chemical Communications, 2017, 53, 740-742.	4.1	10
137	Cp2ZrHCl induced catalytic chain scission of diene-based polymers under mild conditions: Influence of chemical environment around C=C bonds. Polymer, 2019, 161, 181-189.	3.8	10
138	Synthesis of Long-Subchain Hyperbranched Polypropylene Using Thermally Degraded Products as Precursor. Macromolecules, 2021, 54, 5567-5576.	4.8	10
139	Three-dimensional hierarchical porous carbon derived from natural resources for highly efficient treatment of polluted water. Environmental Sciences Europe, 2021, 33, .	5.5	10
140	Characterization of high melt strength propylene/1â€butene copolymer synthesized by <i>in situ</i> heat induction melt reaction. Journal of Applied Polymer Science, 2012, 125, 2724-2731.	2.6	9
141	Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene and polypropylene-g-Poly(n-butyl acrylate) graft copolymers with well-defined molecular structures. Chinese Journal of Polymer Science (English Edition), 2014, 32, 333-349.	3.8	9
142	Synthesis of polystyrene-based Y-shaped asymmetric star by the combination of ATRP/RAFT and its thermal and rheological properties. RSC Advances, 2016, 6, 106648-106655.	3.6	9
143	New insights into the role of lattice oxygen in the catalytic carbonization of polypropylene into high value-added carbon nanomaterials. New Journal of Chemistry, 2015, 39, 962-971.	2.8	8
144	Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1011-1018.	3.8	8

#	Article	IF	Citations
145	Light-triggered disassembly of photo-responsive gold nanovesicles for controlled drug release. Materials Chemistry Frontiers, 2020, 4, 2805-2811.	5.9	8
146	Propylene homopolymerization and copolymerization with ethylene by acenaphthene-based \hat{l}_{\pm} -diimine nickel complexes to access EPR-like elastomers. Polymer Chemistry, 2021, 12, 6307-6318.	3.9	8
147	Upcycling Waste Polyethylene into Carbon Nanomaterial via a Carbonâ€Grownâ€onâ€Carbon Strategy. Macromolecular Rapid Communications, 2022, 43, e2100835.	3.9	8
148	Blends of Linear Low-Density Polyethylene and a Diblock Copolymer of Hydrogenated Polybutadiene and Methyl Methacrylate. Polymer Journal, 1998, 30, 775-779.	2.7	7
149	Synthesis and morphology of polyethylene chains grafted onto the surface of crosslinked polystyrene microspheres. Journal of Polymer Science Part A, 2007, 45, 4477-4486.	2.3	7
150	Morphological Changes of Linear, Branched Polyethylenes and their Blends during Crystallization and Subsequent Melting by Synchrotron SAXS and DSC. Macromolecular Symposia, 2012, 312, 51-62.	0.7	7
151	Effect of fullerene C ₆₀ on the melt grafting reaction between multifunctional monomer and polypropylene. Journal of Applied Polymer Science, 2013, 127, 1394-1402.	2.6	7
152	Microstructure characterization of short-chain branching polyethylene with differential scanning calorimetry and successive selfnucleation/annealing thermal fractionation. Chinese Journal of Polymer Science (English Edition), 2014, 32, 751-757.	3.8	7
153	Impact of particle surface chemistry on the structure and rheological properties of graphene-based particle/polydimethylsiloxane composites. RSC Advances, 2015, 5, 34885-34893.	3.6	7
154	Synthesis of Polylysine/Silica Hybrids through Branched-Polylysine-Mediated Biosilicification. ACS Omega, 2018, 3, 17573-17580.	3. 5	7
155	Selective Synthesis of Magnetite Nanospheres with Controllable Morphologies on CNTs and Application to Lithiumâ€ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800924.	1.8	7
156	Synthesis of a polyethylene-graft-polystyrene copolymer and its compatibilization for linear low density polyethylene/poly(phenylene oxide) blends. Macromolecular Chemistry and Physics, 1995, 196, 2173-2182.	2.2	6
157	Compatibilizing effect of polystyrene-block-poly(4-vinylpyridine) for poly(2,6-dimethyl-1,4-phenylene) Tj ETQq1 1	0.78431	4 rgBT /Overl
158	Synthesis and characterization of a novel covalently functionalized organoclay and its polypropylene nanocomposite. Journal of Applied Polymer Science, 2010, 115, 1105-1112.	2.6	6
159	Promoting the responsive ability of carbon nanotubes to an external stress field in a polypropylene matrix: A synergistic effect of the physical interaction and chemical linking. Journal of Materials Chemistry, 2012, 22, 3930.	6.7	6
160	In situ ethylene copolymerization with an olefin-type monomer for one-pot synthesis of polyethylene tethered on multi-walled carbon nanotubes. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1329-1333.	3.8	6
161	Synthesis and characterization of random or gradient butadiene-p-methylstyrene copolymers via anionic polymerization. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1647-1659.	3 . 8	6
162	Relationship between branch length and the compatibilizing effect of polypropyleneâ€ <i>g</i> â€polystyrene graft copolymer on polypropylene/polystyrene blends. Journal of Applied Polymer Science, 2014, 131, .	2.6	6

#	Article	IF	CITATIONS
163	Striking Effect of PbPU Multiblock Copolymers on the Morphology Evolution and Performance of PP/TPU Blends before and after the sc-CO2-Foaming Process. Industrial & Engineering Chemistry Research, 2021, 60, 2890-2897.	3.7	6
164	Simultaneously Improving Thermal Insulation, Flame Retardancy and Smoke Suppression for Rigid Crossâ€inked Polyvinyl Chloride Foam Through Combined Copper/molybdenum Trioxide. Advanced Engineering Materials, 0, , .	3.5	6
165	Preparing Polypropylene Auxetic Foam by a Oneâ€Pot CO 2 Foaming Process. Advanced Engineering Materials, 0, , 2100859.	3.5	6
166	Exfoliation of organically modified montmorillonite driven by molecular diffusion in maleated polypropylene. Journal of Applied Polymer Science, 2009, 113, 678-684.	2.6	5
167	Combined effects between activating group Z and leaving group R in dithiocarbamates for controlling degradation and branching reactions of polypropylene. Polymer, 2014, 55, 5435-5444.	3.8	5
168	The catalytic cleavage of carbon-carbon double bond in polychloroprene induced by Schwartz's reagent via chlorine self-assisted \hat{l}^2 -alkyl elimination mechanism. Polymer, 2019, 170, 24-30.	3.8	5
169	Compatibilization of high density polyethylene/polyisoprene blends with polyethylene/polyisoprene "thread-through―copolymers. Macromolecular Chemistry and Physics, 1995, 196, 3585-3595.	2.2	4
170	A comparative study of polyethylene and polyethylene/C ₆₀ nanocomposites modified with organic peroxide. Journal of Applied Polymer Science, 2013, 129, 371-382.	2.6	4
171	Synthesis of star-like polybutadienes by a combination of living anionic polymerization and "click― coupling method. Chinese Journal of Polymer Science (English Edition), 2014, 32, 731-742.	3.8	4
172	A new strategy for constructing polypropylene composite foams with excellent ablation resistance and flame retardancy. Polymer, 2022, 251, 124940.	3.8	4
173	Effects of amino groups and microstructure of organic mesoporous silica supported metallocene catalysts on ethylene polymerization. Chinese Journal of Polymer Science (English Edition), 2010, 28, 93-100.	3.8	3
174	Highly efficient synthesis and characterization of multiarm and miktoarm star-long-branched polymers via click chemistry. RSC Advances, 2015, 5, 34466-34474.	3.6	3
175	Synthesis and Properties of SEPS-g-PEO Copolymers with Varying Branch Lengths. Chinese Journal of Polymer Science (English Edition), 2018, 36, 934-942.	3.8	3
176	Synthesis and structure–property relationships of SIS-g-PB copolymers and their application in hot-melt pressure-sensitive adhesives. RSC Advances, 2017, 7, 44068-44075.	3.6	2
177	cis-1,4 Selective Coordination Polymerization of 1,3-Butadiene and Copolymerization with Polar 2-(4-Methoxyphenyl)-1,3-butadiene by Acenaphthene-Based α-Diimine Cobalt Complexes Featuring Intra-Ligand Ĩ€-Ï€ Stacking Interactions. Polymers, 2021, 13, 3329.	4.5	2
178	Title is missing!. Angewandte Makromolekulare Chemie, 1996, 241, 77-93.	0.2	1
179	The role of polymerizable organophilic clay during preparing polyethylene nanocomposite via filling polymerization. Journal of Applied Polymer Science, 2010, 117, 1646-1657.	2.6	1
180	Synthesis of well-defined long chain branched polyethylene via anionic polymerization combined with graft-onto method. Chemical Research in Chinese Universities, 2013, 29, 589-595.	2.6	1

TAO TANG

#	Article	IF	CITATIONS
181	Morphological evolution and properties of thermoplastic vulcanizate/organoclay nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
182	Hydrozirconated styrene copolymer as a macroinitiator to in situ synthesize polyethylene/polystyrene-g-polyethylene alloy via coordination polymerization. Polymer, 2017, 112, 201-207.	3.8	1
183	Synthesis of mono- and bis- benzimidazolin-2-iminato titanium complexes and their catalytic performances in ethylene homo- and co- polymerizations. Molecular Catalysis, 2021, 516, 111974.	2.0	1